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CHAPTER O
INTRODUCTION
0.1 General Introduction

The context of this study was the desire for a better understanding of a
set of concepts weé believe important for the theory of computatién.
Distinctions like "gerial vs. parallel. computation," 'local vs. global

properties,'" "addressed vs. associative memory," :terative vs. recursive

E
R

algorithms," are frequently used to refer to these concepts, often as if

= e e ——
o

they were well-défined technical terms used with substantial knowledge about

the conditions under which these forms of computation would be advantagecus.

LR A

But despite their wide currency in an intuitive form, they have not as yet
received any satisfactory formal definitions, nor are they at all well undei-
stood even in their intuitive forms.

We felt that our inability to formulate satisfactory definitions was due
mainly to the unavailability of thoroughly analyzed. special cases that could:
-serve as models for thinkirng about the broader issues. Good theoriea. develop .
rarely outside of the context of well-understood real problems, and it is
perhaps not surprising that work directed sharply toward: obtainin; an "abstract
theory of computation--e.g., the mathematical developments in current theories
of recursive function, automata, formal linguistics, and the like--has been
disappointing in the extent of its practical illumination, despite its often
elegant mathematical quality. Accordingly, we have Liccome engaged in a number
of attempts to clarify the nature of computations in some problems of

independent interest. In the present study we explore the properties of the

o v e R —— o el A W A e
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simplest class of automata we know. that have no loops or feedback but are
neverthcless capable of some non-trivial computations. Fortunately they are
also rich enough to be the object of an interesting mathematical theory.

1he mathematical results described ‘herein permit analysis, to a certain
level, of the range and limitations of a class of computingmachine that have
been widely investigated, by empirical methods, for possible use on probiems
of pattern recognition.

The characteristic feature of these machines is that‘%hey make their
decisions--about whether or not a certain evehs fits a certain "pattern"--by

"adding up" evidence obtained from-many separate small experiments. This is a
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very important concept because it i's so clear and simple. Most, and perhaps

-

all, more complicated machines for making decisions will have a little of

this character. In any case, until we understand this simple concept very-

-
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thorcsghly, we certainly can expect troubie with more advanced ideas.

4
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Generally, in Science and Mathematics, one advances by understanding first
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the "linear" systems, and these machines are our candidate for the "linear case

”
»

of the parallel machine in general." We will bring forward a numbéx of
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argume.ats, at various points in the text to support this view (which is

a methodological position rather than a technical matter).
These devices, defined below in §0.3 and §1.2 are most fittingly known
as perceptrons in recognition of Roserblatt's contributions toward formulating

mathematically clear definitioas. Under this name, the machines have been

widely inivestigated, but with. generally inconclusive and puzzling results,

The empirical tests have been, by and :large, unconstrained by theoretical
¢S
analyses of the machines' limitations: such analysis as was attempted was:




committed chiefly along certain statistical directions that failed to shed
much light on the relation between the structures of the "patterns" and the

ability of perceptrons to "recognize" those patterns.
Our theory does not completely characterize these limits. For, any

such theory must mediate between some a priori classificationof the patterns

themselves, and their recognition by pergei:trons. It would be too much to ask

for an absolute classification of "pattewns," for this depends ultimately

on what is one's goal, i.e., what one is interested in. We have chogen to
study some patterns that are definable in terms of familiar ‘eometric

concepts, for these are both of great practical interest, .and are profoundiy

well understood mathematically. For each class of geomeiric patterns, we

have to attack the problen of what conditions must be met if a perceptron

is to make an appropriate recogiiition. To do this we need to develop
analytic tools, and often new ones for each .new problem.

Our experience has ‘been that such problems are by no means trivial.

Some of them baffled us for a long time before we found suitable analytic
concepts for treating them. Some of them led to soluvtions quite the opposite
of our intuitive expectation. Above all, we were repeatedly surprised at the
curious, and various, mathematical paths we were led--or rather, forced--
along. We have made some attempt to leave traces of these paths (thus running
against today's mathematical style of covering completely one's intellectual
tracks) and we hope the reader will try to share this by reading tue book - re

as a:novel in which: characters develop and: interact, than as a sequence of

theorems and proofs.

v o Brnant OP ¢ W oo e n s




0.2 ‘Local Properties

One of the wost powerful themes in cybernetic discussions of pattera
recognition {s related to the discovery that seemingly complex “patterns" can
often be characterized or genexrated by'local" ptocc‘uu*. The followiag
examples are meiit to indicate the méaning of the quoted words and to show why
ic is difficult to find a formal definition.

Let R be a region in the ordinary two-dimensional Ruclidean plane. Let
X be a figure drawvn on R, e.g., & circle or a pair of éircles or a black and
white sketch of a wan's face. In general we thirk of X as merely a subset
of the points R. When ve talk of a "pattern" we usually have in mind some
class of figures, e.g., all circles, o¥ all connected figures, or all smiling
faces. We shall discuss a number of kinds of algorithms thaz examine figures
to decide whether they belong to a givea class.

To talk about these algorithms we will have to introduce soms auxiliary
concepts. ‘Wa adopt the word “predicate” for any function @(X) which has the
value 1 for some figures, and the value 0 for all other figures. In goneral,
to compute @(X) we must look at every point of R to check vhether {t s in X
or nt. In some special cases @(X) can be computed by looking only at a proper
subset of points R. In-any case we call the required sudbset of R the Sypport

of @ The simpléat kind. of predicate looks only st a single point of Rt we

* A powerful and produccive theme in. the dtudy of animal behavior, “ethology."
is the explanation of highly selective "roq‘;pttton" behavior-on the basis
of sultiple saquential selection steps, sach relatively simple in fceelf.
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GPP(X) *= 1 ifthe point p-is in X,

- % }.mg‘l‘

8 the single point p.
n
Given any set {pl .o »pn} tontaining n points there are 22

predicates who:a
. %
SUPPOTts are subsets of {pl

pn}, viz., all the Boolean functiong of the

) Sees pncx. Thus the Support of a predicate is simply
the minimum set of points on:which it really depends.

Predicates .of finite support are

Predicates. P, ¢X, P, X

"local” in a Very strong sense, but so

strong as to exclude all examples of direct 8eometric interest. However, we will
put this notion. to use

in defining a veaker but more interesting senge of
localness.,

We will begin with an important geometric Predicate,

Sonvexity.
The convexity predicate ‘CON

Fig. G.2-1

We say that a figure X is convex if, given any pair of its points, the
line segment between them

lies entirelywithin X. This is trye of each

Not all of the 22"
most cf them do.

ave the whole set {p‘l_ cee pn} as their support, but




figure on the left. BRach figure on the right has exceptions, as indicatec
by the dotted lines. Now we wish to cowpute ‘the predicate tm"m(X) which
has value 1 {f X s a convex figure of the plane and value 0 {f X i3 not
convex. Clearly 'O)NVEX does not have a finite support, for its value can
depend on what happens anywhere in the (infinite) plane. We ask instead: is
it possible to find a collection of simpler predicates each with small support,
together with some simple vay to combine them to synthesize '&NVRX’

To be more specific: We shall say that a predicate ¥(X) is conjunctively
local 1f there is a number k and a collection ® (perhaps infinite) of predicates
vhose supports each contain Do more than k points. Furthermore & must have

the property that

¥(X) = L if and only if 9(X) = 0 for every ¢ in .

We ask. whéther 'OONVBX is conjunctively local. (The point is that we are

ﬂggy‘i‘.n:g tc dérelop ways of building complicated predicates.out of simple ones.)
The stswer is yes! We can set k = 3 and choose some predicates Py

‘that depend each on only three points, as follows:
Let x, y, and z be any three distinct points that lie, in that order,

along any straighi. line and define

GG 5 e e 5 . Garni A
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1l if and ~on1y if
x is in x, and
Z is in X, but

‘y is not in X;
0 in any other cage,
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The only way an X can escape ‘having PX) = 3
convex:

Tommy = 1 o= 2

‘ P (X)\ <1,
yelx,z] *Y2

for the sum of any collection of Zeros will be zero, while:

any exceptions will
makes the sum at leagt unity,

Many other 8eometric predicates are conjunctively local. Another eéxample,
discussed also in. §o.4,18 the Predicate

¥ (X) = 1 <> X 48 the perimeter
CIRCLE of a complete circle,

Theorem: *C

*
L(X) is conjunctively local with k= 4,
IRCLE =

Proof: The Proof is based on the fact that a

ny three points X, ¥,2, not in

a straight 1line, determine a circle, ¢

xyz

S—
*

But see note below for the degenerate case of 2 or fewer points in X,




Fig. 0.2-2

Now obviously no pPredicate of limited Support can tell whether the whole
figure X _g éxactly a circle, because some points of X may be outside its
support set. But if X is hot a circlza then at least one of the following
two kinds of events must happen:

i) there are four points X,y,z and w in X vhich do not lie op the
same circle, or

ii) there are three pointas X,y, and z in X and cne point w', not in
X, which do lie on the same circle,

To see this, choose any 3 points Xy Yo 2 in X. They determine 2
circle Cor If (i) is false for all ‘points w not in Co, then all other points

of X must lie 1n-‘c0 and ‘we can conclude that all of X ig contained: in & certal

circle C,. But now if (ii) {s false for a1l points w' in Cp this means that

y . R > )
2Ll of the circle ) is ¢ontained.in X. 5o X is %’ It follows that y, ..

s conjunctively local '"With order r," i.e., can be described by the
simultanecus truth of a lot of Predicates each with < 4 support points.

QC‘EQ Do
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If XX contat «only 0 or 1 or 2 points, it will pass the

U

s

test for circle-ness. There is absolutely nothing that
can be done to prevent this! If we are prepared to
dghore 0, 1, and 2 point figures, or to consider them
"degenerate circles" (which is hard to swallow for the
2-cise) then *CIRCLE is conjunctively local. If we
must reject the 2-po;nt figures as non-circles, then

Yorrere 1% DOt conjunctivély iocal. To see this, we

wote first that the only way s non-circular X can
cscape *CIRGLE(x)’ a8 defined {n 0.2, is by having fewer
thar: 3 poitts, ‘We fow. prove that there 1s no way to
repair this., (This is interesting, not so much because
of ‘the theorem, which is unimportant, but because it is
4 simple .oxample of an- impossibility proof. ) Suppose
‘tiiat ve had a conjunceively local definition for

)
*CIRCLE(X” i.e., a number k and :a set Q of predicates
éach o€ support < k for which:

X 18 a circle <am> 9, (X) = 0 for all q.

Then let .X consist of ‘two. points x, and X, Since X
isn't a circle there must be some ¢, for which ¢
Let qh 's support set be P 1 Py, Ps. ceoy Pk where at
least 93, coey Pk are. not in X. Then ¢ (X) will be 1 for
any other aét X' which: containa x) and % X; but none of
Pas veey Pk But we can always find such an X' which is
a circle; because there are an infinite number of circles
through xl-and %Xy» and we hiave to aveid only a finite set

ox points,
On the other nand -certaisn properties are essentia ally not conjunctively

local: e.g., the property of being connected. (See “apter 5.) As we
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shall underatand later, o minor modification af that proparty w... make it
conjunctively loenl, or even local {n the broader sense to be Jdefined in
the next gection. We are build’ng up to the {dea -that certain properties are
srofoundly global in that separate local obsetvations cannot be combined in
simple ways to vield conclusive evidence for them.

To obtain the new sense of local let us now try to separate ossential

from arbitrary features of the definfition of conjunctive localness. The

{ntention {8 clear: to divide the computation of a predicate § into twy
stages:
Stage L:  The computatiion of many properties ov features
which arve easy to compute efther because they
depend only on a amr”l subset of the whole fnput
space R, or are very simple {n some other
{utevesting way.
Stage 2: A decision algoritlm which oxprosses ¥ as a
functfon of the results of Stage 1 computations,

For the exercime to be meaningful this decinfon

function must also be particularly homogencous, or

cngy Lo program, or easy to compute,
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The particular way in which this intention was realized in our example
is extremely arbitrary. For Stage: 1 we might; instead of restricting the
number of points in the support sets of the loccl functions, have restricted,
for example, their diameter (as in Chapter 8).

For Stage 2 there are any number of ceadidates to replace unanimity as
the decision criterion, with greater claim to generality and very little loss
in computational simplicity. A general theory would have to undertake the
difficult task of characterizing the compléxity of all possible algorithms.
Without such a characterization; the Trequirement of Stage 2 must retain a
heuristic character that makes formal definition difficult.

In this study we shall confine attention to a class of decision functions

that includes unanimous decision as a particular case: that is, the definition

;
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of perceptron in the next section can be thought of as derived from the

above schemo by teplacing unanimity by majority or, more generally, weighted

voting.

0.3 Perceptrons--Defin{tion

Let & be a set of predicates. We say the predicate ¥ {s linear in the

set ¥ 1f it can be expressed in the formg¥(X) = 1 {f and only {f

Looan e(x) 20
get T

where the “"coefficients" Qw and the "“threshold” 0 are real numbers. The

unanimity condition used in the previous section to define con junctive

localness can be expressed in this form by letting Yo = - 1 for all ¢,

and 8 = 0, provided we do not mind the sum becoming infinite., For

S‘)W P(X) = -  @(X) 20 is true exactly when no P(X) = 1.  So

¥(X) = 1 {f and only if @(X) = 0 for all get,

————— e e
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proofs than it ig worth. To prevent it happening we shali "quantize" the
Plane by assuming it to be niadg up of discrete 1little squares. This is
equivalent in effect to ideatifying figures which differ by less than

some "toleranc;:." Moreover we shall consider only bounded figures X, and
chooseé ¢ so. that, for a given X, only a finite number of ?'s make @(X). = 1.
With: these scipulations (vhich will be set our more carefully later) we

define:

A perc. Jtron is a device .capable of computing all predicates which
are linear in some glven set of § of "partial gredicates."* We obtain

families of perceptrons by imposing restrictions on the members of $.

The following families seem tu be particularly interesting:

(a) Diameter-limited perceptrons: the support sets of

members of & are restricted mot to exceed a- fixed

diameter ir the ordinary metric of the plane.

(b) Oxder-restricted perceptrons: we say that a perceptron

has < n if no member of % has more than n points in its

support,

(c) Gamba perceptrons: the members of § have unrestricted

support but must be"linear threshold functions" (.e.,

That is, we are given a set of 9's, but can select freely their weights,
the a‘P's, and also the threshold 6.

[
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hava order 1). This is equivalent to saying that each ¢
in ¥ i{s defined by a signed measure on R, and a threshold
9.0

P
Random perceptrons: These are the fofm most extensively

studied by Rosenblatt's group: they are order-restricted
and ¢ {s generated by a stochastic process according
to an assigned distributfon function.
‘To give a preview of the kind of results we will obtain, we present
here a simple example of a negative result:

Theorem 8.2.3: A diameter-limited pctceptron cannot determine vhether or not

all the parts of a geometFic figure are connected to one another. The proof

requires us to consider just four figures:

Xoo Xoi Xio0 X1y
Fig. 8.2.3

i
y
j
Y
¥
1
:

and a diameter-limited perceptron ¥ whose support scts have diameters like

those indicated by the circles below:

d\\\\

A==V "
X\\\\-‘-\\\\\\\\\\' ==Y,

\JT - — " ALY ///l)&
—;”— ‘ "/> ’ —__—.J\“w “‘\‘ \k\"\\‘ ;// ,//,'l '
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Suppose that a perceptron could distinguish the disconnected figures
xoo apdlu from the counected figures Im lndxm. i.e., by whether.or
not

T >0

aq) P
that is, &ccording to whether or not
L a9 z ¢+ I o . 9>98
group 1 ? -+ group 2 % group 3 ®

Then for xOO the sum of the three Z's is negative. In changing ’oo to

xm only z is affected, and its value must increase enough to make

- group 1

the total exceed 6. If we change xoo to 101 similarly z
’ . group 2

-

nust increase. But if we change xOO to xn then, both Py and
- - group 1
z will have these increases; z is unchanged i~ .every case, so
group 2 ’ group 3
the full increase must be even more on the positive side, and the

perceptron must accept!u as connected!
Q. E. D'

0:4 Seductive Aspects of Perceptrons, I:
Homogeneous Prograsming and Learning

The purest vision of the perception as a pattern-recognizing device

is the following:




The machine is built with a fixed set of computing
elemants for the partial functions ¢, usually
obtained by a random process. To make it recognize
a particular pattern (set of input figures) one
merely has to set the parameters aw to suitable
values. Thus "programming" takes on a pleasingly
homogeneous form. Moreover since "programs" are
representable as points (Ql. dys wee an) in an
n-dimensional :space, they inherit a metric which
makes it easy to imagine a ltind of automatic
programming which people have been tempted to call
learning: by attaching feedback devices to the
parameter controls they propose to “program" the
machine by providing it with a sequence of input

i st TR SIS G e 2
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patterns and an “error signal" which will .cause
the parameters to change in the right direction
when the machine makes an inappropriate decision.

*
The perceptron convergence theorems define

conditions under which this procedure is

guaranteed to find, eventually, a correct set of

values.
To separate reality from wishful - thinking, we begin by
‘-making a number of distinctions. Let ¥ be the set of partial
predicates of the perceptron and L(¥) the set cf predicates

linear in ¢. Thus L(%) is the repertoire of the perceptron -the set of

predicates it can compute as the parametors a¢ range over all possible

* See Chapter 10.




values. Of course L(%) could in principle be the set of all predicates

(on ZR): but this is universally recognized as being impossible in practice,

since ¢ would have to be astronomically large. ‘So any real perceptron
has a limited repertoire. The ease and uniformity of programming have
been bought at a cost. We contend that the traditional investigations

of perceptrons do not realistically measure this cost. In particular they
neglect the followirg crucial points:

i. The translation of geometric patterns or predicates on the
input plane R into n-dimensional vectors (al an) loses the geometric
individuality of thé patterns and ‘has only led to a theory which can do
little more than: count the number of predicates ‘in L(%)! As a result not wany
people seem to-have observed or suspected that there might be particular
geometrically meaningfui and intuitively simple predicates which belong
to no practically realizable set L(%). We have already given an example
of this for the diameter-limited case and will later extend it to the order-
limited cases. At the same time we shall ‘show that certain predicates
which might intuitively seem to be difficult for these devices can, in
fact, be recognized by low-order perceptrons.

ii. Little attention is paid to the size, or more precisely, the
information content, of the parameters Qyo vves a,. We shall give examples
(which we conjecture to be typical rather than exceptional) wheri2 the ratio
of the largest to the smallest of the coefficients is meaninglessly big.

Under these conditions it is of no (practical) avail that a predicate be




in L(®). In somc cases the information capicity needed to store LIRRER a
is greater than that needed to store the whole class of figures in the
pattern!
fii. Closely related to the previous point is the problem of

time-of-convergence in a "learning" process. Practical perceptrons are
essentially finite-state devices. It is therefore vacuous to cite a
perceptron convergence theorem (see Chapter 10) as an assurance that a
perceptron will eventually find a correct setting.of its parameters (if
one exists). It could:do so trivially by cycling: through all its states,
¢.8. by trying all coefficient assignments. The significan: question is:
how fast the perceptron Converges relative to the time taken by this
homecstat-1ike random procedure? It will be seen that there are
situstions of some geometric interest for which the

convergence time can be shown to increase mors than exponentially wich
the size of the set R.

Percéptron theorists are not alone in neglecting these precautions.

A persual of any typical collection of papers on "self-improving" systems

will provide a generous sample of schemes for "learning" or "adaptive"

machines which lack even the degree of rigor and formal definition to be
-found in the literature on perceptrons. The propon:aits of these schemes
never provide any analysis of the range of behavior which can be learned,
nor show any awareness of the price paid to make learning easy, by

restricting this range with hidden assumptions about the environment in




which the device is to operate, One is tempted to decect a mystique of

unintelligibility: the murkier the mechani sm the. greater the virtue, as
though it were better to try to find unanalysable analogues for biological
Systems than to try to find mechanistic explarations for them.

These critical remarks mist not be read as suggestions that we are
opposed to making machineg than .can "learn." Exactly .the contrary. But
‘we do believe that significant learning at a significant rate presupposes
soinz significant prior structure. Simple learning schemes based on
adjusting coefficients can indeed be practical and valuable when the
partial functions are closely matched to the task, as they are in
Samuel’'s checker player. A perceptron with a set of partial functions
properly designed for a discrimination knowa to be of suitably low order
will have a good chance to improve its i erforinance adaptively. Gur deep
objection is to the concept of giving a high-order problem to a
quasi-universal perceptron whose partial functions have not ‘been
constructed with any particular task in mind.

It may be argued that People are universal learning machines and 80 a
countev-example to this thesis. But our brains are sufficiently structured
'to be programmable in a much more general sense than the perceptron and
our culture is sufficiently structured to provide, if not actual program,
at least a rather complex set of interactions which govern the course of
whatever the Process of self-programming may be. Moreover it takes time

for us to become universal learners; the slow transition from infancy to

——
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intellectual maturity is rather a confirmetion of the thesis that the rate
of acquisition of new cognitive structure (i.e., learning) is a ‘sensiiive

function of the level of existing cognitive structure.

0.5 Seductive Aspects of Perceptrons, II:

Parallel Computation

The perceptron was conceived as-a parallel-operating device in the

phitvical sense that the partial predicates are computed simultaneously.
From a formal point of view the .mportant aspect is that they are

computed in&éﬁendently of one another. The price paid for this is that
E}l the vi must be computed, although only a minute fraction may in fact be
relevant to the final decision. The total smount of computation may

become vastly greater than that which would be carried out in a sequential
Process that can decide what next to compute, conditionally on the outcome
of earlier computation. Thus the choice between parallel and serial
methods in any particular situation must be based on the relative value of

reducing the (total elapsed) time ‘against the cost of the additional

computation involved. In the case of the perceptron the concept of order

provides a basis for the estimation of the latter quantites.

Even low order predicates may involve large amounts of wasteful
computation of information which would be irrelevant to a serial computation.
But the numbers can remain within physically realizable bounds, especially

1f a large tolerance (or "blur") is acceptable. High order predicates
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create a completely different situation. An instructive example is
provided by the essentially global predicate of connectivity:

*con(x) = 1 if and only if X is a connected figure. As shown in Chapter 5
a perceptron for this predicate orn a 100 X 100 toroidal retina would need
partial functions that lecok at (a most consérvative minimum of) more -than
800 points.* In this case the computation of lor \l functions is irrele-
vant to a perceptron-like linear threshold decision: the partial functions
are themselves global. Moreover, the number of possible partial functions
with such large support makes nonsense of any hope that a realizable
randomly-generuted set of them would be sufficiently dense to span. the
appropriate -space of functions. To make this point even sharper we shall
show that for certain predicates and classes of partial functions, the
number of partial functions would exceed physically realizable limits even
for a perceptron designed specifically for the particular predicate.

The general conclusion to be drawn is that the appraisal of any
particular scheme of parallel computation cannot be undertaken rationally
without a theory of the correspondingdichotomy of problems as local and
global. The lack of a genexral theory of what is global and local is no

excuse for avoiding the problem in particular cases. The analyses helow

* Unless the predicatea are specially designed, their number may tt n out

1000, and 86 may their coefficients. This would

to be of the order of 2
make it necessary to compute serially, anyway, since all the power of

Niagara Falls would not be 2nough to run them in parallel.
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show that it is not fpossibly difficult tc develop such a theory for

a limited class of computing devices such as the peérceptrons.

R A0 Promes e e
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c.6 Seductive Aspects of Perceptrone, III:

The Use of Simpie Analogue Devices

An attroctive feature of the perceptfon is the idea that the linear
threshold decision function can be -computed by & very simple analogue
device. It iz perhaps generally appreciated that the utility of the
scheme is limited by the sparsensss o. linear chreshold functions %S
set of all logical furctions. However, almost na attention has been
paid to the possibility that the se* of linear functions which are
practically reatizable may be rarer still. To illustrate this problem we
shall compute the minimal ratio between largest and smallest coefficients
in the linear representations of certain predicates. It will become
apparent that this ratio can increasc faster than  exponentially with the
aumber of distinguishable points in R. It follows that for "big" input
sets--say larger than 20--no simple analogué storage device can he made
with enough information capacity to store the whole range of coefficients!

To- avord misunderstanding perhaps we should repeat the-.qualification
made in connection with our critique of the perceptron as a model for
"learning devices." We have no doubt that analogue devices of this sort
have & role to play in pattern recognition. But we do not see the. any

good can come of experiments which pay no attention to the 1imiting factors
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which will assert themselves as soon &s the small model is scaled up to

a usable sile.

0.7 Mathematical Plan: Introduction to Part I

Part I (Chapters 1--IV) contains a series of definitions and general
theorems requirced for Part II. It would be difficult to struggle through
this material without a preliminary picture of the roles these
mathematical devices aredestined to play. We.-can give such a picture
by outlining how we will prove fhe following theorem:

"Lﬁﬁbretﬁ-ﬁ i1 ¢ \'4 ‘_lm
'Suppose the retina R has a finite number, lll. of points.

Then there is no perceptron Eavv (X) >0 that will tell

)]

us whetheér or not thr "number of points in X is odd or even"
unless at least oné of the ¢ 's has support = |Il Thus
no bound can be placed on the orders of perccptrons that
solve this problem for arbitrarily large retinas.

The proof uses several steps:

O N e s sty e

Step 1. in {1, 1--§1,4 we define "perce txon,' "order,"
ctc. more .precisely, and show that certain details of the
definitions can be changed without serfous effects, i.e.,
that T dcp ¢ 2 6 can always be replaced ‘by Z a‘P ® >0.
Step 2. 1In §1.3 %2 _._ .. definé the particularly simpie

¢-functions called "masks." For each subset A of the




retina define the mask pA(x) to have value 1 {f the figure: X
containg or "covers" all of A, value 0 otherwise. Then we.
prove the simple but {mportant theorem (5‘1.5) that if a
predicate has order £ k (nnjl.:!) in any et of P-functions,
there is an cquivalent perceptron that ures only masks of
support < k. (See §0.2.)

Step 3. To really "get at" the parity--the "odd-even"

property--we ask: wvhat Ledrrangaments of the input apace R

leave it unaffected? ‘That i{s, we ask about the group of

transformations that have no effect on it. This seems like
using excessively high-powered mathematics, but it seems
hecessary for the more difficult problems so we should get
used to it here. 1In this case the group is the whole
permutation group on R--thi sat of all rearrangements of Zts
points.

Step 4. In Chapter 2 we show liow to use this group to
reduce its perceptron to a simple form. ‘In the present

case, the group-invariance theorem (see section 2.2)

shows that for the parity perceptron all masks with the
same support-size-~that ie, all that look at the same

numbeds of (though different sets of ) points--can be

glven identical coefficents. Let 5) be the weight

asgigned to masks that have support-size = j,




Step 5. It then follows that the parity perceptron can

be written in the form

s By (Ilﬂ) >0
o J

where K is the largest support and (N) is the number of
subsets of X that have j elements. (Define |X| to be the
number of points in picture X.)

Step 6. Because

(n),_ a(n. 1) ... (n - {4+ _ nl
h| e 24+3 ... 1 j

which is a polynomial of degree j in n, we can put our

predicate in the form
B Clx[) >0

vhere \PK is a polynomial in le of algebraic degree S K. Now
1f |x| ts even, B (|X]) >0 while if [x] ts o, Be(|x]) =0
so that in the range 0 < le s Iki ’ I’K must change its direction
|R| - 1- times. But a polynomial must have degree = |Ri to do
that, so we conclude that K 2 'R! This completes the proof

exactly as done in Chapter 3.1.




This shows how the algebra works in. For some of the more difficult
connectedness theorems of Chapter 5, we need somevhat r.re algebra
and group theory. 1In Chapter & we push the {deas
about the geometry of algebraic degrees a little further to show that’ some
surprisingly simple predicates require unbounded-order perceptrons,

To see some simpler, but still characteristic results, the reader might
turn directly to Chapter 8, which is almost self-contained bacause it does

not need the algebraic theory.
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GHAPTER 1 _TMBORY QF LIMEAR BOOLEAN SKPARATION FY'NCTIONS

10 o .

In this section ve-develop the theory of the linear representation
of predicates  !ined on an abstract set R, without any additional
‘mathematical structure. The theoremi proved here will be applied in later
sections to sets with geometrical or topological -structures.

Our theory deals with predicates defined on subsets of a given base

space which we shall consistently demote by R. We use the following
notational conventions:
1.1 Conventions

(1) Let R be an arbitzary set and ¥ a family of subsets of R.

Using the letters A,B,C,...,X,Y,Z for subsets of R it is natural to
associate with F a predicate @ (X) which 1s TRUE if and only if X¢F.

(i1) We shall use the letters ¢ and ¥ to denote predicates defined
on the set of subsets of R.

We shall use the notation ¥(X) sometimes to mean the predicate whose
value for a given X is TRYE or FALSE, sometimes to mean aibinary set
function whose value is 1 or 0. When we wish to employ the two senses.
in the same context we adopt the notation Ft(xﬂ for the binary function
whoce value is 1 if ¥(X) is M and 0 1f ¥(X) is % We will usually

use this only vhen there is a possibiiity of ambiguity, e.g., to distinguish

between [3 < 5] = 1, which 1s true and 3 < 15 = i, which is false.

(1i1) Occasionally it will be convenient in .examples to use the




traditional representation of ¥(X) as a function of n "boolean variables"
where n = IR) If the elements of R are Xpseee0X,, it 18 traditional to

think of a subset X of R as an assignation of the values 1 or O to the x;

according. to whether the point X, is in X or not, {.e., "xi" ig used

ambiguously to stand for the ith point in the given enumeration of R,

and for the set ‘function 5:183(1. This notation is particularly convenient

vhen ¥ 1s represented in the form:of a standard boolean function of two

PR o (1,

variables. Thus X v x is a way of wri.ing the set function

3

P(X) = [x,eXor xjex'l.

~
i
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(iv) We need to express the idéa that a function may depend only on
*
a subset of the points of R. We denote by S(¢) the smallest subset S of R

with the property that, for every subset X,

PX) = QXS).

We call S(¢) the support of @.
1.2 Functions Linear with Respect to a Class of Predicates
(v) Let & be a sét of binary set-functions on R. We say that y is

is a linear threshold function with respect to ¢ if to each number ¢ of &

there corresponds a real number acp such that, for some real number 6:

For an infinite space R, some predicates will have S(¢) undefined. For
example, suppose that @(X) = 1 <==> {X contains an infinite set of pointa}.
For then one can determine ¢(X) by examining the intersection of X with any
set of S that is the complement of R in some finite set., And there is no

minimal such S.
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s =T £ oo =6t
gt P

This can be written more simply as

s oo, 5T e

y =z ape >0l
Q‘P

We denote by L(#) the set of functions ¥ expressible in this way.

Proposition: The following formal modifications lead to equivalent

definitions:

(1) If & is assumed to contain a constant function, 6 can be taken

to be zero.

(2) The inequality sign "< can be replaced by ">," nge w0

(3) It can be assumed that the exact equality X q)q: = O never arises.

(4) We can restrict the oy ‘be rationals or integere.

(5) The choices allowed under (1)--(4) can be made independe.:- iy.

Proof: Most points are ol;viou: To prove (3) for general real
coefficients note that there zre countably many X's and so countably
many values of Z‘a(qu. To prove (4), for integer a's, note that we could
make all the 's even and put 6 = 1.

Our most common choice will be to take the ay as integer and © as
zero.

Remark on notation: In view of this definitional invariance, it

might be useful to abbreviate the (5 ‘Pcp(X) > Olnotation to simply rracpﬂ’

* But some don't hold in the infinite-retina case.
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in view of option 3. Then one could go on and use inner-product notations
like <Q‘P‘ * @) or even ai(pi. However, we have often found the form with
explicit O more convenient.

*
1.3 The Central Concept of Order

The order of ¥ is the smallest k for which there is a & satisfying
YL (%)
b => |s(@]| s k

vhere |S(9)| is the cardinality of S(¥).

Functions of order 1 appear in the literature under the name of
"linear threshold functions." Note that the concept of order would be
unaffected by imposing the condition that & contein a constant function.

It follows that it would not be changed by assuming © = 0 in the
definition of L(%). Clearly neither can any of the other options of

1.2 affect the value of the order of a predicate.

Definition: @ is called a mask if there iz a set A such that
ox) = [(x>al

We denote this function by P,

* We emphasize that the order of a predicate is defined absolutely--not
simply relative to a particular #-class.
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In point-function notation s mask P is a function of them form:

yl Ayz ATt /\yt°

where {yi] is the subset A of R.
In particular, the constant function ®(X) = 1 is the mask with
support = 0.
1.4 Examples of Linear Representation
Proposition: ‘All masks are of order 1.

Proof: For each x¢A define (px(X) as rxcx'). Then

Wwom T2 e =l

In particular the individual point-function Py and cpy are of order 1.
Similarly the functions X, ¥ x AT X Oy are of order 1. But the
"exclusive or,"x®y and its complement, x =y, are of order 2.
Example (i)
v XXy is of order 1:
>
!'xl +x, + X, ol

X AT2AY; is- also of oxder 1:

f—x1+x2+x3>2—\




xl;i - (’xl +Q-x)>11 = By -x > 07 1s of order 1.

%)\ x, -'\'xz +(1-x) >0] = [5:2 - x > -17, which 1s
also x1: Xy is of oxder 1.

Example (ii)
x'lizgi,, which is
; 2T = (xx + (1 - x)( -x)>0]
x%v X1 %2 1*2 1 2
- r2x1x2 -x - X > -1]

is of order 2. (Proof that it is not order 1 is
in Chapter 2.)

Example (iif)

Let M be an integer 0 <M < lkl . Then the "counting function"
fo - x| = ]

which recognizes when X contains qxac_tlx(n points, is of ovder 2.

Proof: consider the representation

Fo = [M-1n T x+ (D Exx 28]
all i i¥y .
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For any figure X there will be le terms x with value 1, and
Ix| - x| - 1)
>

1‘3 ‘with value 1. Then the predicate is equal to

terms x
o = T - 1. x] - x|-(x] =1 - 2 01 = T(ix] - m? <0
and the only (integer) value of lx] for which this is true is lxl =-M.

Observe that, by decreasing the constant temm, we can modify the predicate

to accept counts within an arbitrary interval instead of a single value.

T 5)*2 <41 = [3<|x] <7
Pig. 1.4

Note that the linear form for the counting function does not
contain R explicitly. Hence it works as well as for an infinite space R,

Q.E.D.




Example ( iv)

The functions [|x| = M] ang (x| <M1 are of order 1 because they
are represented by [ T x, 2 Ml and [ % x, <Nl

We note in passing that

R
£lx]) = £0) + = (£¢k))+T]x| 2 41
kel

|x
= £(0) + 2, (£(k)) - £(k - 1))
k=1

= £(|x|).

This fact {s used in 8s.2.
15 The “"Positive Noimal Form Theorem"
The order .of a function can be determined by &amining its
repre’ ntation as a liuear threshold function vith repsect to the set of

masks. To prove this we first show

; ”W}‘*W&ﬂwi oo




Theorem 1. Every ¢ is a linear threshold function with respect to the

set of all masks.

Any Boolean function i(xi,...,xn) can be written in the disjunctive

normal form

where each Ci(X) has the form

ZlAzz.A v Azq

and each z is either an x

4 orf an ;i. And since at most one of the ci(x)

can be true for any X, we can rewrite ¥ using the arithmetic sum;

¥(x) = c1(~1‘:’)+cz(x)+ er Cp(X)

(even for infinite sums). The bare over the letters can be eliminated

by using the equation

aij = a(l -xj)ﬁ = of - ox B

where o and B are conjunctions, so that any bar on a term within a

conjunction can be removed,




When all the bars have been eliminated and like terms have been

collected together we have:

YO = Ry (X

where each ¢, is a mask, .and each ¢, is an integer. Since .- X) is
1 i n . >

0 or 1, (A) is equivalent to

o = (e m > oy (B)

Exam Ele.l’x +x2+x31soga"|-xl+x2+x3—2xx - 2X. X

Theorem 1.5. 2' The rggreaentation (A) is unique,

To see this let {(pi

3 = 2X3X1+4X1X2X

} be a set of masks and {ai} a set of non-zero

numbers. Choose a k for which S((pk) is minimal, i.e., there is no j such

that S(cpj)c:S(qzk). Then:
P (S(p)) = 1
?;(8(p)) = 0 itk

It follows that Z‘aicpi(X) is ot {dentically zero since it has the value

o for X = S(Cpk)-

Now if Z‘aicpi(X) = ZBiq)i(x) for all X, then. E(cxi-;pi)q»i(x) = 0
for all X. It follows that all o =

3;1. This proves the uniqueness of

; ) -y r’wm‘_mv_;v >
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the representation ‘(A) which we shall call the Positive normal form of y.

Note that the positive fiormal form has the values 0 and 1 as ordinary
aritlimetic sums; f.c., without thel 7} device of interpreting the validity
of an inequality as a predicate

Theorem 1.5.3: ¥ is of order k if and only if k is the smallest number-

for which there exists a set $ of masks tatisfying
Ped > ls(qn\ s k
VeL(y).

Proof: In i = rEziQi > 0] each ¢; can be replaced by its positive normal
form. 1If |S(¢i)| <k, this will be true of all the masks that appeax in
the positive normal form.

Example:

A "Boolean form" hag order no higher than the degree in {its disjunctive

normal form. Thus

zaijkxixjxk - T"ijk"i"j - Faijkxijxk

{1lustrating how the negations are removed without raising the order. This
particular oxvder-3 form appears later (55) in a perceptron that yvecognizes

convex flgures,
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Theorem 1.5.4: If '1 has oxder 0l and *2 has order 02, then 'l @! and
?1 = '2 have order s 0l + 02.
) . ¥y =3 S G -
Proof: Let *1 I‘atvi Oland *2 P&ﬁ Q!J > Oland assume that the
coefficdients are chosen so that equality never arises. Then
D . - { -, ]
Ot = [y q) > ol

- WL_,vth > al

S@e] < {s@pl + gseop] .

P V)

v PR
-

The other conclusion follows from ﬁv £ " 1 - f\mﬂ‘
Example:
Stnce VM(X) - [Mx 2 Nl = [x < Ml we conclude that t“ has

N .
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order < 2, the result of example (L111).

Question: What can be said about the orders of ”1 & ¥, and
ﬂl o 12,7._? The answer to this question may be surprising, in view of the
simple result of the previous theorem: It is showm m§1. that for any
order n, there exis t a pair of predicates 'l and Vz both of order 1 for
which (Y)‘ A *2) and (Vl o '2) have order > 2. In fact, suppcae that
R = AUBUC where A, l;, and C are large disjoint subsets of K. Then
*1 = rle\Al > |X(¢H and 02 = NIxaBl > !x,qcl? each have order 1

because they are represented by




- D >0lad FE 5 . g x, >0
%€ X, ¢B x, €C.

but we shall see in Sfl{that (#1 A {32) and. “1 v *2) are not even of

finite order in the sense described 1n§ 1.6 below. oOn the other hand

one can be surprised in special cases: see, e.g., Theoremf 5.5.

1.6 Predicates of Finite Order

Strictly, & predicate is defined for a particular set R and it

Same predicate for different R's.

However the motivation of our work was entirely from.

makes no formal sense to speak of the

"predicates” defined

independently of R--e.g., the number of elements in the set X, or other

geometric properties of figures in a real ‘Euclidean plane to which X and"

provide mere approximations. To be very precise we could use a phrase

such as predicate scheme to refer to a general construction which definesg

8 predicate for each of a large class of sets R. In general (except in

this section) we shall wmsge "predicate" in this wider sense.

Suppose we are given a predicate scheme Y which induces a predicate

*R for each of a family (R} of retinas. We shalil say that Y is of finite

order if the orders of the *R are uniformly bounded for all R's in the

appropriate family. Two examples will mahe this clearer:

(i) Let {Ri} be a sequence of sets with ’Ril

= i. For each Ri there
is a predicate *i defined by the Predicate scheme 1M‘R(X) which asserts,

for XC Ri’ ttgat "lxl 18‘ an even number. " As we will see in

§3.1, the order of any such *i must be = {, Thus iPAR is not of finite

R
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order.

(1) Now let '1 be the predicate defined over li by the predicate

scheme 'TEN:
WX = Nixi « 1ol

We shall show in 1.4 thae ¥, 18 of order 2 for &1l R, with £ > 10 gnq

(obviously) of order zero for Ri R,. Thus the predicate schame tm

18 of finite order. We ghal] say in this case that it tg of order 2,
In these cages one could cihtain the same dichotomy by contidering

infinite sets R; on an infinite retina the predicaze
Yod® = Tixl = o0l

is of finite crder, in fact of order = 2, while
Yoart® = [ixs tq even]

has no order. We shal} often look at problems in this way and in §7
will discuss formalization of the concept of an infinite Perceptron. It
should be hoted, however, that the use of infinite pPerceptrons does aot

cover all cases. For example the predicate




o = fid > g7

is well-defined and of oxder 1 for any finite R. It is meaningless

for infinite R, yet we would like to consider the corresponding

predicate-scheme to have finite order.
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CHAPTER 2: TIE GROUP THEORY

In this chapter we consider linear -threshold functions that are
invariant under groups of transformations of the points of the lbase-space
R. The purpose of this, realized finally in Chapter V, is to establish
a connection between the geometry of R .and the question of when a

geometric predicate can be a linear threshold function.

2.1 Example: Coefﬁcients“Avetaged Over A Symmetry

As an introduction to the methods introduced in this section we
first coasider a simple, .almost trivial example. Suppose we wish to
prove that the function X%y v ;1;2 is not of order 1. Té¢ do so we
might try to deduce a contradiction from the hypothesis that numbers

o, B, and O can be found for which

t(xl,xz) = X XyuXX, = 05‘1"'93& > 0.

We could proceed directly by writing down the conditions on « and B:

352_80=->a$9_
X, =1=>p =9
_:52-.1—>a+8>9

In this simple case it is easy enough to deduce the contradiction:




- <
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=0 and 8§ <0 ==> <0

}—>a+p<a—>a+p<e
B 0and § <0 ==>g <(

while by hypothesis o + g > 6. But arguments of this sort are hard to
generalize to more complex situations involving many variables.* On the
other hand the following argument, though it may be considered more

complicated in itself, leads to elegant generalizations. First observe

that the value of ¥ is invariant under permutation of X and Xy thac is,
¥xnx,) = ¥(x,,x,).

ax1+px2>e

ax, + px, > 8

(%"‘9"1 + (g"}l)*z>°

by adding the inequalities.

Y o SOMEE A

Similarly

-0y + ﬁxz <9

L I PR

A, <
axz-i-Bh_ %]

@%’E) x *+ (g_-;_ﬁ) xp = 8.

* One éin say the same of geometric arguments about hyperplanes separating
vertices of the n-dimensional unit-cube.
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It follows that {f we write y for % » then

*(Xl,*z) = ryxl +vx, > 9‘1

i.e., we can assume that the coefficients of x) and x, in the linear

representation of ¥ are equal. It follows that
o = fy[x| > el = [yjx| - e >0]

-(1f we assume that the space X has only the two points x; and xz).

Now consider three values of X,

X, = A | %l = 0 vix| - 8s0
x, = {x} |x =1 Y|X[ - 8>0
X, = {xx} x| = 2 vix| -eso

Since X, ard X, satisfy ¥, and . does not, the first-degree polynomial
yix| - 6 in lxl would have to change direction twice, from positive to

negative andd back to positive as [X| increases from O to 2. This is

clearly impossible. Thus we leaxrn something about § by averaging it over

the permutations that leave it invariant. (The method is similar to that

used in Haar Mecasure theory. See 2.5. In fact, for order 1, it is the

same method.)
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2.2 Equivalence-Classes of Predicates

The generalization of this procedure involves consideration of gtcups
of transformations on the set R, and functions ¥ invariant under these
groups. In anticipation of application to geometrical problems, we rec~1'1
the mathematical viewpoint of Felix Klein: every interesting geometrical
property is an invariant of some transformation group.

Let G be a group of transformations of R onto itself. If 8¢G and X C© R
ve define Xg, the result of transforming X by g, to be the set obtained by

applying g to each member of z:

xg = {ylxex y= xg}.

Then we can define an equivalence relation 9 = @' of predicates with respect
G

to the group by

v: ®' if and only if, (IZ)YX)(P(X) = @' (Xg)).

That is,$ is equivalent to ¢' if there is a transformation g such that
¢(X) and ¢'(Xg) are always the same. Our main, theorem shows that if a
perceptron is to classify patterns in a way that is invariant under group
G, then its computation can, and i a sense, can only depend on the

G~equivalence classes of its ¢-functions.

2.3 The Group Invariance Theorem

Let (i) G be a fi-“te group of permutations of R

(1i) & be a set of predicates on R closed urkier G,
i.e., ged, geG ==> Pg¢¥, where we define 9g so that

P8(X) = @(Xg).




{(i11) ¥ be in L(?) and invariant under G.

Then there exists a linear representation of ¥

v =Tz p ¢>0l
ped ¥

for which the coefficients pq, depend only on the G-equivalence class of

¢ i.e.,

Kt wedD-L =
e N

Remarks:

(1) These conditions are stixonger then they need be. To be sure,
the theorem is not true in general for infinite groups. A counterexample
will be found 1n§ 11.4.  However, in special ‘cases we can prove the
theorem for infinite groups. An example with interesting consequences
will be discussed later. (See § 11.2° .) It will aleo beé seen that
the assumption that G be a group can be relaxed slightly.

(2) We have not investigated relaxing condition (1), and this would
be interesting. However, it does ~ot interfere with our methods for showing
certain predicates :to be not of finite order. When the:theorem 18 applied
to ‘'show that a particular ¥ is not in L(%) for a particulaxr- #, it shows
also that ¥ is not even in the possible larger L of # closed under G. If

one found a useful notion similar to but more delicate than "order," one

»
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might have to find a correspondingly sharper invariance thecrem for it.

Proof: Let the given linear representation of ¥ be:
o= Tta® ¢ >0l

The new representation will bdbe:
v = fEp@ v >0,
B(® = I alee).

g¢G

It is clear that f(g), so defined, dependas only on the equivalence class

of 9. For if ¢ = ¢*, then &0 such that @' = g, and
G

B(e'Y = I a(e's) = I .a(eg® = B oales) = B9
g8¢G g¢G gcgo (¢ TN

It is equally easy to see that § is indeed given by

t = (epp) 9>01

Choose any X. Suppose that ¥(X) = 1. Then ¥(Xg) = 1 for all geG,




Eoal®) Xg) = I a(9) w(X) >0 for all geG.
L

ped ped

If we substitute ¢' for ¢g this can be written

vhicii is the same as

L a(es) ${X) >0 for all geG.
ped

Adding these equations term by term:

L I o(pg) (X) >0
8SG e

‘Pf“ ch a(‘Pl)) ®X) >0

Z B ox) >o0.
ped

Similarly, if ¥(X) < 0 we obtain

L B(P 9(X) <o0.
ped




This proves the theorem. For readers to whom these ideas seem difficult
to work with abstractly, some concrete examples of the equivalence classes
will be useful; the geometric “'spectra" of f‘S.Z and especial‘ly‘g’- 5.5 should
.be helpful.

We shall often use this theorem in the following form:
CLorr. 1: Under the conditions of the theorem ¥ has & representation

e a ¢ > 0‘]
g ¥

where (1) & is the set of masks of degrees < k, and: (ii) a(p = aq), if
S(¢) can be transformed into S(¢') by an element of G.
Proof: For masks, cpA = Py if and only if A = Bg for some g¢G.

¢
Corr. 2: Let & = !1 Vecae \Jim be the decomposition of ¢ into equivalence
classes: by the relation =. Then if ¥ is «n L(%) and # is closed under G,

G
¥ can be written in. the form

feanm > ol
where Ni(X) = \{cplcpcii; ex)H,i.e., Ni(X) is the number of ¢'s of the

i-th type, equivalent under the group, satisfied by the argument X.

Proof: ¥ can be represented as

K SR W e o

Vel 2o e > 0]
ped




= It Eacp>0-‘
1 qea, ¥

- M2a = ? >0 = rr‘an (0 >0
i cpc‘

2.4 The Triviality of Invariant Predicates of Grder 1
Theorem: Let G be any transitive group of permutations on R.. (T¢ansitive
means: for every pairp,q ¢ Rthere is. a g¢G such that P8 * 9.) Theén the

first-order predicates. invariant ux@'et G are:

¥ = [1xl >n
1@ = ([l 2n7
¥WH = (x) <n]
o = [ <=

for some m.

Proof: Since the group is transitive ail the one-point predicates Plp)

are equivalent. Thus we can assume that

Wwo =031 o ) > 8| (or with- some other
{p}
peX inequality sign),

i.e., the coefficient o 18 independent of p. But £ ¢ cp{ } > 0 can be
peX
transformed into T cp{ } >— (for a > 0; for ¢ <0 a similar argument
peX
proves the corresponding assertion). But £ <p{p} = [x' Thus order-1
peX

invariant predicates can do nothing more than define a count on the
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7 cardinalitly of "area" of figures.
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2.5 Relation to ‘Haar Measure

[

The last theorem is closely related to Haar's theorem on the unicity

of invariant MeRASUX28. Tor measures on finite sets the unique Raax

measure is, in fact, the counting function HX) = |x|. The .?\enowixji

remarks make this relation a little more precise. —

We fiist note that the get function defined by:

H(X) = Iyx, = &

i
xicx

oy

18- a measure, l.e., satisfies:

) +p(Y) = pxuy) - nxnyy.

If we defingd invariance by:

"%

RNy

— ﬁhﬁw‘t"w..‘”:w TR o o e

rX) = ju(xg) -

ot

it would follow ;mediatel_y from Haar's theorem

that u(X) = c|x|, where

¢ 1s a ccnstant. OQur hypothesis on p is anghtly weaker since we merely

assuma;

T e 2 e

.

HEX) >0 <> y(xg) > g,
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and deduce a correspondingly weaker conclusion, i.e.,

m(X) > 0) <=> (c\X|>0).

In the general case the relation between an invariance theorem and the

theory of Haar measures is less clear since the set function Ihi/(pk(x) is not

in géneral a measure. This seems to suggest some generalization of measure
(perhaps on simplicial complexes rather than sets) but we have not tried to
pursue the problem. Readers insterested in the history of ideas might find

it interesting to pursue the relation of these results to those of Pitts

and McCulloch. (1947).




3.0

In this chapter we study the order of two particularly interesting
predicates.
3.1 The Parity Functions

In this section we develop in some detail the analysis of the

particular predicate 'PAR defined by

UG f1x| 1e an oad number] .

Our interest in 'PAR is threefold: it is interesting in itself; it will

be used for the analysis of other more important func".‘ionq; and,

especially, it illustrates our mathematical methods and the kind of qQuestion
they enable us to discuss.

Thecrem 3.1.1: ¥pag 18 of order |r|.

That is, to compute 11,“ requires at least one predicate ‘whose
support covers the-whole space R.
Proof: Let G be the group of all permutations of R. Clearly Ypag 18

invariant under G.

Now suppose that ’PAR - r&xicpi > 0] "het“‘{’l are the masks with

IS(cp‘)l = K and the a, depend only on the equivalence classes defined by

G
Since masks with the same support are identical, and sets with the

saue cardinality can be transformed into one another by elements of G,

P .?j > 's(‘?i)' - ‘Is(‘Pj)J’

)
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X
«lZ (@ £ @>0]

¥ X

where Qj is the set of masks whose supports contain exactly j elements.

We now calculate for an arbitrary subset X or R,

¢, = T @(X).
‘P"j

30

WA AR v ) s -0

Since @(X) is 1 if S(¢) ¢ X and O otherwise, C j(X) ia the number of

subsets of X with } elements; {.e.,

pud

Y

<yt g e

c.o = (X} o Ixldxl -1 ...ix| -3+ 1)
J ] T

3

f |
3
: 5
:f‘
| |
i :

- - -
1 N V-

which is a polynomial of degree j in lxl
‘ K
It follows that I ajcj(x) is a polynomial of degree ¢k 1n|;|, say
3=0
B(|X]).

2L LSS

. . e e < e oo e .
NPV NI WS SR CP - e, % - o £ R L R A
- Lo WA Kag, s onTa

72N

Now -consider any sequence of sets xo’ Xl, ceey x|R| such that xi

».
“u

contains i points, i.e., -lxil = i,

-
R

Then the sequence of values of P(|X]|),

RA%H # 0, BUX() >0, BUKL) € 0, ..oy B(Xpy ),

-
ey
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changes direction |R|{times as |X| increases from

0 to ]Rl But since P i{s a polynomial of degree K, it follows that
K 2 |R|.

.

From this we obtain the

Theorem 3.1.2: If *PAR ¢ L(®) and if ¢ contains only masks, then ¢ contains

every mask.

Proof: Suppose, if possible, that ‘PAR ¢ L(%), that & contains only masks,

and the mask whose support is A does not belong to 8. 'Let

1

Q
iy - ‘
¢ st M i B i,
- y

- s o ¢>0].
*PA.R ped P

.
C Lt ® s

Define, for any ¥, tA(X) = ¥(XNA).

Clearly *IA”AR’ the parity function for subsets of A, is of order |Al by
the previous theorem.

Now consider q:A for @ed. If S(p)c A, clearly cpA = Q.

If S(¢9) 1is not a subget of A, cpA is identically zero since

e b s A Emeeaeae e st o e

S@ E A => S L XN A => G(XNA) = 0 = ) = o.

It follows that either S(CPA) 18 a proper subset of A or rpA is identically

Zero.

i,

Let QA be the set of masks in & whose Supports are subsets of A.

WA L
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A =
Then ¥p, . f(:*Aaq,v>d

But for alj q;veiA It would follow that the order of

*:AR is less than |AA[, which contradicts theorem 3.1.1.

Thus the hypotheses
are impossible ang the theorem follows.

q.e.d.

Corr. 1: If *PAR € L(%) then @ aust contain

IS@) = |r].

The following theorenm,
studentg of threshold logic:

at least one & for which

also immediate from the above,is of interest to

Corr.‘ 2: Let & be the set of a1) ':AR for Broper subsets A of R. Then
oax £ L(H.

The further analygis of *PAR' in Chapter 9,31 shows how functiong that

vight be recognizable, in Principle, by a very large pPexrceptron,

coefficients of Vpag BUSt be 2,R’ -1

3.2 *l'he "One-in-a-box“ Theorem
N

‘Property of “connectedness. Its
to Chapter S; the bagic theorem ig
Tlieo;‘en

s Let Al, ceny A- be disjoint subsets of R ang define the pPredicate

(X = l’(vi)(lxnail >0)7

‘ Recause Chapter
5.7 gives an 1q ) tion can pe
skipped on first reading,

,,
< Drsi 40 Fin v
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f.e., there is at least one point of X in each Ai‘ Then, if fpr all i,

1Al = te?, the order of ¢ 1s 2 m.

Corr.: If R = AU AU ... UA, the order of ¥ is at least

1/3
SN

The retina is a square array
of 16 cells, and A, is the i-th

lusn. The one-if-a-box predi
cmm o
| ﬁ \\ column is- occupied.
/nEn

N

Fig. 3.2

M: For each i = 1, ..., m let Gi be the group of permutations of R
which permutes the elements of Ai. but do not affect the elements of the
complement of Ai'

Let G be the group generated by all elements of the G!.'

Clearly ¥ is invariant with respect to G.

Let ¢ be the set of masks of degree K or less. To determine the

equivalence class of any Q¢ consider the ordeied set of occupancy numbers.

fIs@n Al
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Note that @, & @, if and only if 18(e) Al = l“@,ﬁl for each i.
Let ~§1,, 92, ceey Qn be the equivalence classes.

Now consider an arbitrary set X and an equivalence class ’j' We wish

to calculate the number llj(x) of members of lj satisfied by X, i.e.,

@ = | {elpet; A SDC x}l.

R0 L Sl
Ce

g

A simple combinatorial argument shows that

IxNAl IxNal ‘\xﬂ%l
nj(x) -( ( ) ( )

Is( NAY/ Ms(dN A \s@N Al

where (i )3 M—-:r‘:"-ul and @ is an arbitrary member of Py

Since the numbers {S(@)N Ai‘ depend only on the classes ’j and add up

to not more than X, it follows that RJ(X) can be written as a polynomial

of degree K or less in the numbers x, - lxmuil :

Ij(l) = Pj(xl. vers xq).

Now let §¥ = §> aq, 9> 0l be a representation of ¢ as a linear threshold

function in the set of sasks of degree less than or ‘equal to K. By the

argument which we have already used several times we can assume that ¢ »

depends only on the equivalence class of @ and write




Py

.
¥

n
- 1.21 ’jrj(xl. seay ‘.)
:
& vhich, as a sum of Polynomials of degree at most K, is itself such a
i Polynomial. Thus we can conclude that there. exists a polynomial of degree
at most KX,

N . n
Lo, 9@ = L p I o0 - T pmon
Q’ j'i j«.j j‘l JJ

Q(xl, N x‘)

with the property thit

I ™

Yo = foesy, .o, %) >0 with x = lxa

1.0., th.t if,

for dll1 1, 0 < x s 4u?,
then
Axys vees x) >0 <m> VD (x> 0).

In Q(xl, ceey x‘) make the formal subst{tution,

X = (t - 1-1))2,

4 Mook )




Then Q(Xl. cecy xi) becomes a polynomial of degree at most 2K in t. Now

let t take on the values t = 0,1, ..., 2m.

Then x1 = 0 for some { 1f t is odd, in fact, for { = £ ; 1

but x1 > 0 for all 1 if t 1s even.

Hence, by the definition of the V predicate, Q must be positive for
even t and negative or zero for odd t. By counting the nusber of changes

of gigu it is clear that 2K 2 2m i.e., K2 m. This completes the proof.




CHAPTER 4: THE AND/OR THEOREM

4.0 TIntroduction

In this chapter we prove the And/Or theorem stated in §1.5.

Theorem: There exist predicates, '1 and "2 of order 1 such that '1" 1:2
and *1 A ?2 are mot of finite order.

We prove the assertion for tl/\ ‘2‘ The other half can be proved in
exattly the same way. The results will not be used in the sequel and could
‘be omicted on a first reading.

4.1 Lemmas

We have already remarked inil.s that if R = AUBUC the predicate

VX = I'ixnal > |xAc|] is of order 1,
and stated without proof that
1@ = [(Ixnal > [xnc)Afxne| > |xncf])

is not of bounded order as IRI becomes large. We shall now prove this
asgertion. We can assume without any loss of generality that
|A| = |B|= ICI and the formal statement is:

If tH(X) 1s the predicate of the stated form

for |R| = 3, then the order of 'H increases

without bound as M — o,

The proof follows the pattern of proofs in j 3. We shall assume that the

oxder of {vn} is bounded by a fixed integer, N, for all M, and derive a

‘: ;”;‘;‘“N‘mw‘.‘mw.
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contradiction by showing that the associated polynomials would have to
satisfy inconsistent conditions. The first step is to set up the
associated polynomials for a fixed :M. We do this by choosing the group
of permutations that leave the sets A, B, and C fixed but allow arbitrary
permutations within the sets. The equivalence classes of masks are then
characterized by three numbers, i.e., lA‘AS(cp)l, lnns(‘p)l and Icr\S((p)l.

For any given ¢ the number Nq)(X) of masks in its equivalence class satisfied

by a given set X is.

laA~x| |8 x| lemx|
ﬁq)(X) - ( X ' )

lAns(o) | |BAS(®) | lcAs@ |

1f lS((p)l S N:this is clearly a polynomial of degree at most N in the

three numbers
x = lAnx|, y = [BAX|. 2 = [onx|.
Let & be the set of masks with |aupport| < N. Enumerate the

equivalence clasies of & and let N (X) be the nunber of masks of the ith

class satisfied by X. The group inv - ance theorem allows uas to write:
HW® = BNm > d.

The sum Zpini(X) is a polynomial of degree at most N in x,y,z. Call it

R T
N 13
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Pu(x,y,z) .

Now,. by definition, for- those values of X,y,z which are possible

occupancy numbers, {.e., hon-negative integers <M:
Py(x:y,2) >0 4f and only if x>z and y > 2.

We shall show; through a ‘series of lemmas, that this canto. ‘be true for all
M.
Lemma 1

Let Pn(ic,y,z) be.an infinite sequence of non-zero polynomials of

degree at most N, with the property that for all positive intégers x,y,z
less than M

X>zandy >z => By(%y,2) 20

XS Z2or y <z im> Pn_(xsy,z) <0.

Then ~thei‘q exists a single non- rnomial P(x,yv,z

= ) 3 of degree at most
N with the property that the implications (A, with slacing P ahold for

positive 1nteg_ral values of x,y,z. This follows by a straightforugrd:

compactnesa' argument, (It should be nbserved that we have had to weakein tnx

separation conditions (A) by allowing equality in both conditions since

inequality would not bé preserved in the limit, Consequences of this will

make themselves felt in

o x,.?njzr;_s.ﬁ.;um", N '

=

- . -
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the proof of lemma 2.} For the sake of completeness we include the following

clementary proof. Write:

T
I)M(x,.y,z) n 15:1 (‘M’imf(x,y,z)

where m u&,...,n& is a enumeration of the monomials of degrees < N {n

X)ys2.

Since the conditions on PM are preserved under multipligation‘by a

positive scaling factor, we can aszume that

2

2%.1- lo

Now consideir the set of points in T-space;

(‘)' - (cu,l’ck-'z’t'otcn’r)‘ X - 1,2....

These all lie in a compact set--the surfaca of the unit T-dimensional

sphere. There {is, therefore, a subsequence (‘“ -which converges to a limit:
J

c"j hnd C = (cl.cz,...,cT)

in the scnse that, for each {,

- . e v
S
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o °uj,1 1

The polynomial

T
P(x,y,z) = & Cimi(x:}'oz)
i=1

inherits the properties (A) for all positive integral values of x, Y, Z.
That it is not identically xero follows from the fact that the‘c1 tuherite.
the condition % ¢ = 1,

Lemma 2

In oxder to prove our main theorem, we first establish a corresponding
result for polynomials in two variables, an. later (Lesma 3) adapt it to

P(x,y,z).

If a polynomial f(a,B) satisfies the followiqgﬁconditions for all

integral values of o and ., then it is identically zero:

«>0and g >0 =>f(a,B) 2 0

a=0oxr B <0 =>f(p) < 0.
Proof:
Assume, if possible, that f(a,p) satisfies these conditions and is not

identically zero. We can write

£.B) = BV g@) + r(ap)




vhere z(x,B) is of degree less than N in B, and g(a) is not identically
zero. Then we can find & value a, > 0 such that g(ao) and g(-ao) are both

non-zero. We can .then find BO > 0 30 large that

BQN 8(30) > lr(qotﬁo).l‘

I
-

We have:

R Hl bl

f(aoxpo) >0 > f('ao’ao)

» ., N . N
T T T,

so that

L e x

3(a0) > 0 > g(-

<

;

!
i
i

0)°

It follows that (-Bo)“g(ao) and (-Bo)Ng(-ao) have opposite signs. But
this contradicts the hypothesis: B <0 ==> f(a,8) <0, which implies:

A o e S

.
Bt e B et

B SOPE AL TRV it s o T T 8 e T T TR T

£ By = (-By)" y(ay) 0

£(-ay =By = (8" y-ap s 0.
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This contradiction establishes the lemma.

4.2 A Digression on B::ont'l Theorem

Readers familiar with elementary algebraic geometry will observe that

Y s S R S QT

the lemna would follow immediately from B‘zout's theorem if the conditions

could be stated for all real values of ¢ and 8. We would then merely have to




prove that the doubly infinite L of the figure is not an algebraic curve:

v
FTREE AT

$(.p) 0

..F ¢P )

$(«,p)£0 $(=,p) «0

Bg;out's theorem tells us that if the intersection of an algebraic

curve, L, with an irreducible algebraic curve, Y, contains an infinite

number of points, it must contain the whele of Y. But the L contains the
positive half of the y-axis. Straight lines are irreducible, so it would
have to contain theé entire y-axis if it were algebraic.

Unfortunately, because our conditions hold only on integer lattice-
points, we must allow for the possibility that f(a,8) = O takes a more

contorted form, for example as in the next figure:




Part of the pathological behavior of this curve is irrelevant. Since

a polynomial of degree N can cut a straight line only N times, the incursions

into the interiors of the quadrants can be confined to a bounded region.

This means that the curve f(a,f) = 0 must “agymptotically occupy" the

parts of the “channel" illustrated by

SO K

OXININISLNLS

/7
It seems plausible that a generalization of Bezout 's tl.eorem could be

formulated to deduce from this that the curve must enter the negative halves

in a sense that would furnish an immediate and more iiluminating proof of

our lemma. We have not pursued this conjecture, but believe it indicates

a valuable direction for future research.
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Leuma 3

If a polynomial P(x,y,z) satisfies the following conditions for al}l

positive integral values of x,y, and Z, then it ig identically zero.

x>:=a=ngy>:->l'(x.y.:) =0

X<zor y £z ==>P(x,y,z) < 0.

Proof:

Suppose that P{X,y,2) had thege properties, but were not identically

zero. Define Q(a,B,z) = P(z+a, z+8, z) and write

QB:n) = 2 £(a,) + r(a,p,x)

Then we can show that f must satisfy the conditions in Leama 2: Choose

any % and po for which f(ao

.po) ¥0. Choose a sufficiently large positive
> § .
zy» for 4,

(a) zo'tvgo >0 and :o+p°>0

® o5 £008)| > letoryotyoa .




T
Ev
e
$
7
&
P
»

It follows that f(ao.po) 20 Gm> Q(ao,po,:o) 20,
i.e., if and only if P(zo + Qe z, + po. zo) 2 0.
n\usaa >ngo >0->:°+a0 >:o mdzo-l-po >:o
-—> _P(:o + &y z, + ’0’ zo) 20
- f(ao,po) 20
and similarly ao <0 2_5 po <0 ==> f(ao.ﬂo) <£0.
But this is true 'for all ‘ao,po. Thus by the ‘Lemma 2, £(x,p) = 0.
It follows that P(x,y,z) is of degree zero in %, ‘which is only possible
if it is identically zero.

This concludes the proof of the And/Or theorem.




INTRODUCTION TO PART Il : Geometric Theory of Linear Inequalities

In Chapters 5 - 8 we will study the problem of building lincar predicate
machines to "recognize" patterns that are geometrically interesting. We
will study chiefly two-dimensional patterns, and will ask quegstions like:

(1) Is the problem of deciding whether the input figure is gonvex, or

is_connected, of finite order (in the senge of § 1.6)? This is studied in

Chapter 5.

(2) What is the smallest order of a perceptron that can recognize
triangles, or circlesg? Studied in Chapter 6.

(3) Car a finite-orger perceptron tell when the input picture contains
two figures that are congruent or similar (in the Euclidean sense). Can

one determine which figures are symmetrical? See Chapter 7.

(4) What can be done with the more restricted dianeter-l;g;ted

perceptrons? See Chapter 8.

Our discussion of these questions jg not very systematic
or thorough, because our knowiedge is still based on too few well-understood
particular cases. Furthermore, we are reluctant to Propose any very rigid
classifications of the knowledge we have obtained, because at almost every
turn so far the resultg have been unexpected. Thus, the generally strong
negative results described in Chapter S5 left Us unprepared for the apparently
positive results in Chapter 7, which in any practical gense are again
reversed by the considerations ir Chapter 9,

For a preview of the general situation, before immersion in mathematical

detail, we Suggest reading first the introductory sections of Chapters 5 - g,

'
oW el 5,




Geometrical Patterns

We a2re about to study a number of interesting geometrical predicates.
But as a first step, we have to provide the underlying space R.with the
topological and metric properties necessary for defining geometrical
figures; this was not necessary in the case of predicates like Parity and
others related to counting, for these were not really geometric in
character.

The simplest prccedure that is rigorous enough yet not too
mathematically fussy seems to be to divide the Euclidean plane, Bz, into
squares, as an infinite chess board. The set R is then taken as the set
of squares. A figure xB of Bz is then identified with that set of eiementa

of R--i.e., that collection of squares--that contain at least one point of

xE' Thus to any subset xs of Ez corresponds the subset X of R defined by

X = {xchxnxx ¥ AL

Now, although X and XE are jogically distinct no serious confusion can
arise if we identify them, and we shall do so from now on. Thus we refer
to certain subsets of R as "circles," "triangles," etc. meaning that they
can be obtained from real circles and triangles by the map xx - X. Of

course, this means that near the "limits of resolution" onc begins to obtain

TN e o W gy, —g v
VT ey

-oat u«gz‘-&l!&%ﬂ L PRy T




apparent errors of classification because of tie finite “"megh" of R.

Thus a small circle

will not look very round.

If it were necessary to distinguish betwnen=£2 and R we would say

that two figures XE, xa' of Ez are in the same R-tolerance class if

X = X'. In this we would follow the general mathematical approach
proposed by E.C. Zeeman [1963) for treating this kind of problem; so

far, we have not had to do so. There is no problem with the translation
groups play the main roles in Chapters 6, 7 and 8. There is a serious
problem of handling the tolerances when discussing, as in § 7.6,

dilations or rotations. The Problem is eveén more serious when discussing
general topoligical equivalence and it is only becuase we use very special
restrictions on onr figyres, in Chapter 5, that the t.lerance theory can

be avoided.

. s
T e T e
.

MY e s ey sy




CHAPTER S: CONNECTIVITY, A GEOMETRIC PROPERTY WITH UNBOUNDED ORDER

5.0 Introduction

In this chapter we begin the study of connectedness. A figure X is
connected if it is not composed of two or more separate, aon-touching, parts.
While it is interesting in itself, we chose to study the connectedness.
property especially because we hoped it would shed light on the more basic,
though ill-defined, question of local vs. Klobal property. For connectedneas
is surely global. One can. never conclude that a figure is connected, from

isolated local experiments. To be sure, in the case of a figure like

one would discover, by looking locally at the neighborhood of the isolated

point in the lower right corner, that the figure is Dot connected. But one

could not conclude that a figure is connected, from the absence of any such

local evidence of disconnectivity. If we consider figures like the following,




it is difficult to imagine any local event that could bias a decision

toward one conclusion or the other. Now, this is easy to prove, for

sl

= S O s W R

example, in the narrow framework of the diameter-limited concept of local
(see ;0.3 and 58). It is harder to establish .for the order-limited
framéwork. But the diameter-limited case gives us a hint: by considering
a particular subclass of figures we might be able to show that the problem
is equivalent to that of recognizing a parity, ox something like it, and
this is what we in fact do.

5.1*'Ihe Connectedness Theorem

‘We define connectedness as follows:

Ao AP GGRITRAL I 2 abr F s orr il s

Iwo points of R are adjacent if they are squares (in thé-map XE - X
with a common edgé**. A figure is connected if, given any two points
Py> Py of the figure, we can find a path through adjacent points from Py
to Py-

Theorem: The predicate
¥{(X) = Tx is connectaﬂ
is not of finite order (§i.6), i.e., it
has arbitrarily large orders as lRI grows

in size.

‘

* The proof infS.«l is needed for the theorem of §5.3. Otherwise the proof
in §5.7 of theorem$ 5.1 yields a better result.

** We can't allow corner contact, as in s to be considered as connection.
For this would allow two “curves'to cross without "intersecting":
and not even the Jordan Curve Theorem would be true. The problem
could “e avoided by dividing E2 irito hexagons instead of squares!




Proof 1: Suppose that ¥(X) could have order . m. Consider an array of

. 2
squares of R arranged in 2m + 1 rows of 4m~ squares each,

a%’f*\.‘ﬁ \“\\%

C

v ‘6;. ;>:$h~‘ \\‘\§§b 1¢‘

Let GO be the set of points shaded in the diagram; that is, the array of
points whose row indices are odd, and let G1 be the remaining squaces of the

array. Let $ be the family of figures obtained from the ' igure Gb by

adding subsets of Gl, i.e., F¢ if it 1is of the form

GO\JFI, where FICL Gl' Now F will bc connected if and only if its Fl

contains at least one square from each even row; that is, if the set Fl
satisfies the "one-in-a~-box" condition of §3.2. The theorem then follows
from the One-in-a~-Box Theorem.

To see the details of how the one-in-a-box theorem is applied, if it is




not already clear, consider the figures of family 4 &8 a subset oF 111l

k
CON

‘that could xecognize connectivity on R, we could have one that works on J ¢

possible figures on R. Clearly, if we had an order-k predicate ¥

aagef§¢§hé same prodicate with constant zero inputs to all variables rot
;ﬁ?cotiél. Andjﬁiﬁce all points of the odd rows heve always value 1 for
.flgh;es in ¥ , thite in tuxn means that we could have an-order-k predicate

o decida the oﬁo-£n~Aabox:proper;y«on“nét ¢

Y namely: the same predicate
further raestricted to having constant uiiity inputs to the points in 01.

Thus cach Booledn Tunction of the original predicate *gour" replaced by
the function obtained by fixing éertain .of its variables to zero and one;

this operation san never increase the order of a function, But sinta this

last predicate cannot exist, neither can the «riginal *EON' This proof

shows that o,y has order at lease ¢+ [R] . In 5.7 we show it im at
least ¢ - }Rl'l/z.
5.2 An Example

Consider the special case for k=2, and the equivalent oneein-acboy

problenm for a Gl-space of the form

in which m=3

227 ‘ ™} and there are just

4 squares in ecach

$§§? ‘ \ box.
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Now consider a y of degree 2; we will show that it cannot characterize
the connectedness of pictures of this kind. Suppose that § -rﬁai¢1 > 6‘
and consider the equivalent form, symmetrized under the full group of
permutations that interchange the rows and permute within rows*. Then

tliere are just three cquivalence-classes of masks of degree > 2, namely:

single points: wi =X,
point-pairs: mll = Xx,X (x, and x, in same row)
) L 173 i J
] . 2
point-pairs: qﬁj xixj (x1 and xj in different rows)
hence ay rder 2 predicate must have the form
1 11 12
¥ a0 X) + ullN X) + ulzN X) >0

whcre'ﬂl, NLL, and le are the numbers of point sets of the respective
types in the figure X.

Now consilder the two figures:

*  Note that this is not the same group ased in proving theorem §3.2
There we aid not use the row-interchange part of the group.

1)
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x2
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In each case one counts:
”
Nl =6 Nll = 6 Nl“ =g

hence the form (1) has the same value for both figures. But Xi is
connected while X2 1s not! Note that here m=3 so that we obtain a
contradiction with lAil = 4, while the general proof required

|Ai| = 4n” = 36. (It is known also that if k=6, we can get a similar
result with |A1| = 16. This was shown by Dona Strauss.)

The case of k=2, m=3, IAiI = 3 is of order 2, since one car in fact

express the connectivity predicate for that space as

v= Ity + 82y - x> 4l

(This was found by brute force)

i
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The proof method used in this example is an instance of use of what
we call the "geometric n-tuple spectrum,” and the general principle is

further developed in Chapter 6.

5.3 Slice-wise .Connectivity

It should be observed that the proof in 55.1 applies not only to the

property of connectivity in its classical sense but to the stronger

predicate defined by:

A figure X is "slice-wise disconnected" if there is a straight line L

such *hat:

SOV F IO WA

Y does not intersect I and does not lie entirely to one side of L.

The general connectivity definition would bave "curve" for L instead of
"straight line," and one would expect that this would require a higher-
order for its realization. ©
It is fairly clear that human ability to discern connectivity is
limited, if the available time is restricted, suggesting a non-parai‘el
:ess. Thus it takes a certain time to decide which of these figures

are connected, even in the simple cut-wise sense:

.
s

o




The study of the order of predfca“es is often facilitated by the

reductior of a given predicate to an. ..ez gimpler one.

analogous to ""homomor phi sm, " "quotient" and 50 on in more developed ares

of nathematics, the following eéxamples are ugeful in particular applications
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and indicate an interesting area for future research.

(a) Let us say that a perceptron system, P, is defined by the
basic set R and a set & of Predicates on subsets of R. A second perceptron
system, P', is a sub-perceptron system of P if the basic set R' is a sub-set
of R and if its set of Pirdicates ¢' is that obtained by relativising the

members of $toR', i.e., each predicate ¢ ¢#' satisfies
XCR' ==> p'(X) = @(X) for some pcé

and all predicates 9' satisfying this condition are in ¢'.

Clearly the order of any predicate of the form ¥' for P' 1s at most
that of y for p.

(b) Isomorphism must be given the following natural sense: Let P
be defined by R and & and p' by R' and &'. Then an isomorphisn, £, is an
isomorphic map £: R = R' of the setis R with the property that for each
ped there is exactly one @'ed satisfying (X} = 9'(£(X)) (vhere

£(X) = {peR'| qeR; £(q) = p}).

(¢) R' ig obtained from R by a collapsing operatior £, if f is a map

from points of R' to disjoint sets of R, {.e.

PER' ==> £(p) C R

Pla =>£(p) ) £(q) = A.
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A predicate ¥' on R' is obtained from a predicate ¥ on R by the
collapsing map £ if §'(X) = §(£(X'). For X' CR'.
Theorem 5.4. 1:Collapsing Thwrgn:

If £ is a collapsing map from R to R' and ¥' is cbtained from y by f,

then the order of ¥' ~ 1 greater than that of y.

Proof: Let § = r 9 @ > O.I where & is the set of masks of degree less
&

than % on r. .§
Now for any X' C R, %
D = YEERYD) T
Yy
= Tsa_ee@y) >0). ® . "
8 ¢ 1) .
A
We observe that (1) remains true if & is replaced by the set ] ' ' @_

cf masks ¢ for which S(¢) C £(R'), for if

S(y) ¢_f(R') then @(£(X')) = 0 for all X' ¢ 2.

A
Now for @e® we have

s

- B e
b & i e O

s(pc L2 {£(p)|per'},

et

in fact

S(@c U {£6k) [£(p)S(9) # Al
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X' O {plp)ASlp) # A}

=> £(X')D U {£(p) |£)AS(P) # A}DS(9),

ie,, X'D {p|E(INS(Y # A => £(X")DS(g) => p(£(X')).
On the other hand, if @(£(X')), i.e., £(X')DS(¢), it follows that

£(P) ~ S(¢) ¥ A ==> pex'

since £(p) A £f(q) = A for p ¢ q.

Thus 9(£(x") = X' D [p|£(p) , (o) # AJ).
In other words @(£f(X')) is a mask on R' with support

{pl£() A S(9) ¥ A}

But since the sets of the form f(p) are disjoint, for different P, 1t

follows that
lele@) A s # 23] < s ] <k
Going back to equation (1) we see, then, that ¥' is represented as a linear

function of masks of degree less thap k.

q.e.4d.
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5.5 Huffman®s Construction for N Proof 2 of Theorem 5.1
—-—~________!co === 0L lheorem 5.1

We shall illusirate the application of the Preceding concept by

giving an alternative proof that *(ZON has no finite order, based on a

construction suggested to us by D. Huffman.

The intuitive idea is to construct a switching network which will
be connected if an even number of its n switches are in the "on"
Position. Thus the connectedness Problem i8 reduced to the parity

problem. The network is shown in the diagram for n = 3,

x) ) X3
E3) x, X, . ‘ —)
_ — =i
x1 X, X, g
x x % N
* 2 3 :
§ 3
- <
The interpretation of the 3ymbols x; and X; 1s as follows: when x, is in ; i
il
the "on" position contact is meia whenever X; appears, and broken vhenever fg"
;i appears; when x; is in the "off" position contact is made where x %'
i

appears and broken where x; appears.

Fow

It is easy to see that the whole net

~ 4

-2
iy

is connected in the electrical and topological sense if the number of

e

switches in the "on" pogition is 0 or 2. The 8eneralization to n ig obvious:

S
.
i

i
&
-

. «
FUTYR/ AN

(a) List the terms in the classical normal! form for ’RAR conaidered
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as a point function, which in the present case can be written:

' = ey - "*- i
PAR (x)%):%3) = X)X, X ¥ X) X)X ¥ X X, X WX, X, X0 :

(b) Translate this boolean expression into a switching net by )

interpreting conjunction as series coupling and disjunction as parallel

coupling.

(c) Construct a perc~ptron which "looks at" the position of the

switches.

The reduction arguement, in intuitive form, is as follows: the

°

P R S

Huffman switching net can be regarded as defining a class g'of geonetric

s figures which are connected or not depending on the parity of a certain

<s

set, the set of switches that are in "on" position. We thus see how a

perceptron for *CON on one set, R, can be used as a perceptron for WPAR on
a second set R'. As a perceptron ror *PAR’ it must be of order at least
|R']. Thus the order of *CON must be of order |R'|. We can use the
collapsing theorem to formalize this argument. But before doing so we
note that a certain price will be paid for its intuitive simplicity: th;
set R is much bigger than the set R', in fact IRI must be-of the order of

]
|R |, so that the best result to be obtained from the

magnitude of 2

construction is that the order of *CON\mUSt increase as log lR|,

J—
N

This gives a weaker lower bound, log |R| compared with |R!1/3’ if we

13
wish to estimate the order. IJn fact, in order to escape this penaliy we i

— [




cbtain a sharper bound.

5.6 Connectivity on a Toroidal Space |R|

Our earliest attempts to prove that *connect ed has unbounded order led
to the following curious result: The Predicate *CON on an 2n x 6 toroidally
connected space |R| kas order = n. The Proof is by construction: consider

the space

e
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Figure 5.5.1
in which the edges €2 and £,f are identified, Consider the family of
subsets of R that satisfy the conditions
(1)  all the shaded points belong to each xeF
(i1) for each Xe.? and each i, either both points marked a,
or both points bi are in F, put no other combinations
are allowed,
Then it can be seen, for each Xe¢¥}, that X has either one connected
component or X divides into two separate connected figures. Which case

actually occurs depends only on the parity of l{i]ai €X}|. Then using the

Collisping Theorem and Theorem_§3.1.1, we find that vCON has order 2 -}2- Ill

The idea for this proof came from the attempt to reduce connectivity
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to parity directly by representing the switching diagram:

Figure 5.6.2
If an even number of switches are in the "down" position then x is
connected to x' and y to y'. 1If the number of down switches is odd, x is
connected to y' and x' to y. This diagram can be drawn in the plane (see
§S.7) by bringing the wvertical connections around the end; then one finds
that the predicate Ix is connected to x'1 has for order some constant

1/2
multiple of |R| . If we put the toroidal topology on R, the order can

[N PR

be shown to be greater than a constant multiple of |R|; this is also true

for a 3-dimensional Euclidean R. These facts strongly suggest that our
bound for the order »f *CON is too low in the 2-dimensional plane case. The

following section Zmproves the situation somewhat by replacing |R|1/3 by
|1/2

T S S e g M Ve

IR

5.7 Reduction of *COI to YPAR—in the Plane

The following construction shows that the order of *CON is > 0(|R|1/2)

for two-dimensional plane figures. It results from modifying Figure 5.6.2

So as to connect x to x'. This is easy for the torus, but for a long time

we thought it was impossible in the plane.
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:.‘: We first define a “4-level switch" to be a pair of figures with the
* following two connection diagrams.
¢ ’ ) ; S
. P | ./30
- r A /St
Figure 5.7.1 .
In the "down" state we have
Py connected to 9 \ , >
P
P, connected to 9 ' [
P, connected to a b
-
= 1
Py connected to % z {
. ¥
and we write Q
.1
2
- .

Py ™% 441) mod 4.

il

'
..

g_

t
i With the switch in the "up" state we have, similarly, ! i
g ¥
3 3 ' g
E\ PL ™ 91-1) mod 4. ! :
\? A E: .
-1 i‘
. ) ‘i
. 2 :
: { '
! L
P
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‘Then; changing a switch will have the effect of adding 2(mod 4) to the
index of the q connected to any given p, because subtracting 2 has the same

effect as adding 2. Now consider the effect of n switches in cascade:

-,-t"‘i' g g e - ';!—&“ '
R - . e g
t: : : . l.::. d .l : ' -3 A\" -

This simply iterates the effect: each switch that is "down" adds 1 to
the g-index and each '"up" switch subtracts l(mod 4) so that if k switches

are down we have

B ™ Ypk-(n-k)mod 4

Then that there are only two possible mappings since

if an even number of switches are down we have

Py - qt—n(mod &)

and if .an odd number are down we have




> .
Py Y42-n(mod 4)

Finally, we add fixed connections tying together Py Py and Py and

Ngn’ Din’ and 9Y4n’ The overall effect in the two cases is then either

Figure 5.7.3
and we see that in the one case the network is disconnected and in the other

case it is connected. We illustrate the n = 6§ case:

(See Figure 5.7.4, p. 1l6c.)

and we can state:

3 .";‘}i"'*'l‘!d\"'
T

Theorem 5 ..1l: This network is connected when an odd number of switches

[

are down and disconnected when an even number are down.

It remains only to realize the construction of the switches. Define

a switch to be the two configurations:




S et

«16c-

T AT =

AR Tt ST ey TR

S -l R S s

[ ]
AV C N S+ i v o o e 2 e
?izﬁi%m, e
< - Cy oy ¢
Pl ) " " iy e IS
v 7 . -
) - i L. .




Pigure 5.7.5

Remember that E is not a comniction. When the entire construction

is completed, for n switches, the network will be abcut 5n squares loag

and about 2n + 12 lqua;:es high, so that the number of switches can grow:
1/2

proportionally to .IRII . It follows that the oxder of tm' grows at
1/2

least as fast as [R| .




The idea for the proof comes from observing that in the planar

version of Figure 5.6.2

Figure 5.7.6
we have P 9 and Py =9, for one parit:‘y'»an? P~ and P, ™ Y for the
other. If we could make a permanent additional direct connection from
py *o ‘ql then the -whole net would be connected or disconnected according

to the parity. But this is topologically impossible, and because the

construction -appeared incompleteable we took the long route. through proving

and applying the One-in-a-box theorem. Only later did we realize that the.
P "9 conaection could be made "dynamically," 1if not directly, by the

construction in Figure 5.7.1. This figure is made by :uperinpdam two

copies of Figure 5,7.2, and using the second copy only to insure that R,

and q, are always connected in the first copy.
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5.7.2 The Order of jCON_As a Funct}_on of |R]

What is the true order? Let us recall that at the root of the -proof
methods we used, was the device (§5.0) of considering not 211 the ffgurn
but only special subclasses with special combinatorial features. Thus even
the order |R|/12 of §S.6 is only a lower bound. Our suspicion is that the
order cannot be less than |R|/2. As for the number of ¢'s required,
Theorem 3.1.2 and the toroidal results give us 2 zl“"u. but his too, is
a lowc bound, and one suspects that nearly all the misks are needed.
Another line of thought suggests that one could get by with the order of
the number of connected figures, but that has probably not much smaller
exponent. As for the coefficients, the results of §9 will apply immediately.

Examination of the toroidal construction in §5.’6 nmight make one

suspect that the result, ¥ =L R| is an artifact resulting from the
P N~ 12

Cco
use of a long, thin torus. Indeed, for a "square" torus we could not get
this result because of the area that would be covered by the conmecting
bridge lines. This clouds the conclusion a little. On the other hand,

if we consider a three dimensional R, then there.is absolutely no difficulty
either in the torus or in ordinary E3 of showing that *CON ,2% '.|R|,. He
leave unresolved the problem of finding. precisely the lower bound of t“

in Ez', content with showing that it is not of finite order, end that it

1/2
grows at least as fast aa-lR{ = .

5.8 Predicates Related to the Euler Formula

Curiously enough the predicate




rx is connected“\,\'x contains .at least one hole1

has :finite order, even though neither disjuynct does--an instance of the

opposite of the And/Or phenomenon.

involving the Euler Telation for orientable 8eometric figures.

5.8.1 The Euler Polygon Formula

Two-dimensional :objects have a topological invariant G(X) that in
Polygonal cases ig given by

G(X) = IFaces(X),:!,\ - IBdges(X)‘} + IVertices(X)l.

Some examples:




Topologically, G(X) 1s in genera] given by

6(X) = [connected components| - |holes|.

It {s possible to make low-order Perceptrons that realize Predicates
like ['G(X) = n] and fox) < n|as follows.

For each point X, of K choose weight

al = 41 ("vertices"),

For each adjacent pair m’: choose weight

alj = .1 (".dﬁeji").
For .each "square" choose weight

ai k1 = 4] ("faces")

For all other masks, choose wéight

a = 0,

Then it 14 claimed that

i ) —=m— g Vol gp-an oy - -
S Sk, W) T .

We sketch the Proof by (inductive)

anklysis of what happens
(square in !2,) is added to o figure

vhen & point

v'iding an adjacent square to-a figure, that :touches on only one side
does .ot change ¢, and adds 1 - 1 = 0 tg gur sum:;




N L

Adding a square that touches two others normally decreases G by unity,

ard appropriately adds 1 - 2 = -1 to our sum:
= —

This normally connects two components or (if the two were already corrected)

adds a hole. The exception is:

which does not change G and appropriately adds 1 - 2%+ 1 = 0 to the sum.
Case-analyses of the 3-neighbor and 4-neighbor ¢ituation complete the

proof: these include partial fills like

which add 1 - 24+ 2=0and 1 - 4+ 4 = 1, the latter ‘representing the

increase in G vhen a hole is finally filled-in. All this corresponds to

an argument in algebraic topology concerning addition of e‘dgetr and cells.




chain-complexes.

It follows immediatéely that the predicate

(x is simply-connected]-*ﬁ:(!) >0]

[X has 1ess thap 3 holes] = [g(x) > - 2].

by a finite order Perceptron.

Note that thig topological invariant is thus seen t

o be highly "logal”
in nature--indeed

all the ¢'s satisfy (a very tight)

diameter-1imitation’
Now returning to our initial claim we note that

fe) =n1 = (r'c(x) =a7 = [ex) n’|)

hence by Theorem 1.5.7 we can conclude that r G(X) = N1 has order <8, But
the proof of that theorem involves constructing Product-¢'s that

are not




diameter-limit.ed, and we believe that this. predicate cannot be realized by
diamet_:er-limit:ed Peérceptrons. The situation seems similar to the relation

between §8.2 and§8.9, but we have not explored it. If the conjecture ig

within topology, of the distinction between

diameter- and order-limited?

in the

where QO contains the masks enumerated in 5.8.1. we now show that,

assuming bounded coefficientsg (aee§9. ):

Theorem 5.8.2. The only tomlogical invariantg in L(iazare functions of
G(JQ.

Proof:

right. Then the Sequence of figureg

B fm




are topologically equivalent.
Suppose that teL(Qo) is tdpologj.cally invariant. Since this includeg

translation and rotation (by 90°) invariance, we can write

' = rawo + ﬂnpm + Y‘wm > 61’

Define f(n) to be the sum of the Sumiations for figure xn. Sincs the

diraction of the inequality must be the same for a1y X, Ve must have, for

all n,
£X) + nq+ B) > ¢
£5(Y) + n(g+ B) < o
for‘any figures X ang Y for which ¥(X) and ~ ¥(Y). But then we myst have

@+ B > 0, because otherwige ¥ would be trivial (constanc).

Simtilavly, by appending to x the figures

one finds that 24 +3B+ys= B+y=0 a2nq We conclude that
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and hence that

89,
v=lom > 27¢

Hence L(Qo) contains only the Euler invariants! Q.E.D.

We can push the argument into larger #'s. Suppcide that the masks of

the f°ma““ adjoined. to ¢ . ‘hen by using the figu. -extemsions

4 F I

we find that 2a+ 28 + 6§ = 6 = 0, hence the new masks will hav: zero
coefficient in y. 2ven if we further adjoin the maskef? , we wmust then"

have--(from the same extensions)

ag + o +ac&+atp ~O-q£ +ad;

-




shows thi, g *a%f- e @™ O and nence
thay ZS:J; #0d hence @8

are both zero (else

-,-. would

change cof\qeaqtiwtl\, contrhdicting the definitig- in §5.1},
All Y4 Sthyglaty o conjec:‘ure we have not investigateq at all; thet
the only. Tyhizaye topological invariants of finite .order are of
Eulerian fum. 2 Yhig were Proved, it would directly imply--the connsctedness

theoren, thygh 1, Wouldn't give a magnitude estimate on order-growth

;_-* NA— A

Thére are Wy Qip&r topological invariantg besides the number of component s
of X and GCRS, for eXample, ra component of X lies within a hole within anofheg
component o'y 7.

r

T e e e e




CH. PTER 6: _GEOMETRIC PATTERNS OF SMALL ORDER

6.0

Chapters 6 and 7 will demonstrate some techniques for cinstructing low-

otder predicatas of geometric character. The results are in one sense more

positive than those of the previous two chapters. ye were frequently surpriseg
to find that certain predicates are of much lower order than we originally
expected. However, there are alszo some -iegative results of a4 new kind. 1In

86,6 we shail face the problumjpf‘recognizing Patterns "in context," A

1ow-order.perceptron can tell, for example whether g given figure is g

Square (as shown in §7.2.5) but the problem of deciding whether a figure

cqptq#ﬁs a square (and perhaps something else) 1g not of finite order!
In Chapter 7 e describe a very powerful technique, "attacificatibn,"

that shows tiow tg construct finite-order fun.. .ns for many patternsg invariant

under important geomecric groups, €.g.. translation and dilatatiofis, But this
method seems to give rise to extremely- large coefficients, In Chapter 9 ye
shall see that the occurrence of -coefficiantsg vwhich increase without bound;

as the retina size increases, is not ap accidental by-product of this method

of construction; it will be shown that predicates ag simple as recognizing a

of 1imited order.

The divisicn of material betwsga»Chéptera 6 and 7 corresponds formally
to two geneéral methods we have found for constructing geometric Predicates
of finite order; "difference-vector Bpectra' (Chapter 6% and "Stratitication”

(Chapter 7). A deeper difference {g related to the st . of group invariance

R . .
e | SuU S S S s 1Y Su—




in the two csses.

The geometric Predicates we want to consider are .4 Avariant under
the group of Euclidean transformations, and sumietin,. _ e -ant invarisnce under
size-dilatation ag well, Unlika the groups of permutat_'on used up to now,
dilatation is not €asy to define in the context of fini
The difficulties are,. at leagt uperficially, of two kinds: those that

come from discreteness

be prevented by the raster size from halving it,

retinal lattice). Problems of the second kind, which ye shall treat at some

miin results, 1In Chapter 6 we usge £7 .:8 that, in Some sensz, depend only on
the "local" 3tructure  of the grour. The theorems ye Prove then remain tryue
whether R is the full infinite Plane; or {f ye force it to be finfite, e,

as we did in §5.6 by cutting-out a finite portion ang sewing its edges together
with a toroidal connection, In all cases, the Group Invariance theorem is
applicable, and the coefficients are equal on equivalent ¢'s, etc. The price
seems to pe _hat ip each case we are accepting a diameter-limication, either

in the predicates or in the class of figures to be accepted. (Thus we

recognize the set of geometric rectangles in §6.3.2, y their "conjunctively

local" diameter-1imited Property of having only four corners. But we cannot

recognize geometric squares (pteszmably) without the methods of Chapter 7.)




In Chapter 7 we use more global properties of the transformation
group; in particular, that all the translations of the plane can be orde. i
in an -enumeration under which sufficiently large elements always dominate
sufficiently small ones. These enumerations enable us to show that some less
local properties can be realized on the full infinite plane: the price is
unbounded coefficients and loss of equal coefficients for equivalent predicates.
These procedures do Dot survive toroidal closure of a finite portion of the
plane because the required property of the ordering is destroyed, and this
appears to be irreparable if the group contains cyclic groups in its global
structure.

The predicates and methods of representation of Chapter 6 dejiend only on
the local structure of the group. In the next chapter we use more global
properties of the transformation group; for example, we will use i complete
ordering of all translations to obtain low-order representations for certain
predicates. This result doesn't carry over to rotation because these
procedures do not survive a toroidal closure of a finite part of the plane.
(The ordering relation is destroyed!) This seems irreparable because the
group now contains a cyclic subgroup in its global structure. Indeed we find
(in $7.10) that certain simple translation-invariant predicates do: not satisfy
the group invariance theorem on the infinite Plane. It will turni out that we
can use this to advantage. We eventually shall show (in §9.4) that the G.I.
theorem doesit hold £f bounds can be placed on the coefficients, and so deduce

that the delinquent predicates cannot possible be represented with bounded

coefficients. But despite this consolation prize we feel deeply dissatisfied
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with our state of understanding of the inter-relations of these phenomena.
We believe there is Some deeper fact connected with the globaj structure: of
the group, but we have been unabje to guess Precisely what it ig. Thus,
although the next two chapters contain many amusing constructions and some
intriguing theorems, we see them as Posing more questiong than they .answer.
‘Because translat:ion-invariénce is required throughout Chapter 6,

theorem 9.4 assures us that we cap use the group-invariance theorem provided

In $6.1--§6.4 we show that certain Patterns have orders = 1,

=4 respectively. 1In most cases we usually have Dot established the lowey

bound on the orders and have no 8ystematic methods for doing so.

fF.1 Geometric Patterns of Order 1
N

When we say "geometric Property"

invariant under dilatation. The first two invariances combine to define the
"congruence* group of transformations ang all three treat alike the figures

that are "simflar" in Euclidean Geometry. Por order 1 we know that a}i




coeffi¢sents can be assumed to be equal, since the translation group satisfies
the condition for Theorem 2.4. Therefore, the only patterns that can be of
order 1 are those -defined by a single cut in the cardinality or area of the

set:
¥=TIx] >Alor ¢ = Mx| <al.

Note: If translation invariance is not required, thea.gggceptrong,cf’ordet 1
can compuce other propertijes, e.g., concerning moments about particular
points or axes. However, these‘are not "genmetric" in the senge of being
suitablly invariant so while they may be of considerable practical
importance, we will not discuss them here*.

6.2 Patterns of Order 2, Distance Sipectra

For k = 2 things are more complicated. As shown in 81.4, ex. iii, it is
possible to define a double cut, or segment, in the area of the set; that is,

we can do the counting. trick, and recognize the figures whose areas are

¥=a <[x| <Al

In fact, in general we can always find a function of crder 2 k that recognizes

the sets whose areas lie in any of k intervals.) But let us return to patterns

* See, e.g., McCulloch and Pitts (1947) for an eye-centering servomechani sm.




invariant under geometric groups. First, consider only the group of

translations, and masks of order 2. Then two masks xlxzzand xl'xz' are

equivalent if and only if the difference vectors

. ' '
xl x2 and x1 xz

are equal, possible with OPposite sign. Thus, with respect to the translation
group, any order 2 PYedicate can depend only on a figure's "difference-
vector spectrum," defined as the Sequence of the numbers of pairs of points

separated by each angle and distanceé pair, ° The two figures:

have the same difference-vectgﬁ Spectra, {.e,,

vector" number of pairs

0 4

1

.’
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Hence no order 2 ‘Predicate can make a classification which is both translation
invariant and separates these two figures. 1n fact, an immedjate consequence
of the group invariance theoren is:

Theorem: Let ¥(X) be a translation-invariant Predicate of order 2.

n(v) to be the number of pairs of points in X that are Separated by t

Y. Then ¥(X) can be written

*=rzavn(v) > 907,
v

Proof: n(v) predicates in the class @(v) are satisfied by any translation of
X.

* .
Corollary : Two figures with the Same translation Spectrum n(v) cannot be

distinguished by a translation-invariant order 2 perceptron.

Example: the figures

are indistinguishable, while

* Conversely if° the Spectra are different, e.g., n(vl) (A) < n(vl) (B) then the

translations of two figures can be separated with rn(vl) (X) < n(v;) A)1. But

classes made of different figures may not be separable,




have different différence-vector spectra, and can be separated.
If we ajd the requirement of invariance under rotation, the last pair

above becomey ¥ndfistinguishable, because the equivalence-classes now group

. . . *
together all Jyffexences of the same length, whatever their orientation .

Ar interesting pair of figures Totationally distinct, but still indistinguish-

able, for k =2, 18 the pair

which have the gsme (direction-independent) distance-between-point-pair spectra

through order 2, namely:

T N

Note that v¢ did not allow reflections, yet these reflectionally opposite
figures are moy <onfused! One should be cautious about using "intuition" here.
The theory of rotational invariance Tequires careful attention ‘to the effect
of the discrete yetiunal approximation, but can presumably be made consistent
by application of Zeeman's methods; for the dilatation "group," there are
serious difficulvies, There is of course no difficulty for the 90° rotations,
the only rotatiow group used here.




- le: = i from 4 pairs

le = /2 from 2 pairs
xj] = 2 from 2 pairs
'le = /5 from 2 pairs

and each has 5 points (the order 1 spectrum).

The group-invariance theorem, §2.3, tells us that any group-invariant
perceptron can<pot distinguish between members of equivalence .
classes of masks, but can depend only cn the pattern's "occupancy numbers,"
i.e., exactly the "geometric spectra" discussed here. Many other proposals
for "pattern-recognition machiiies"--not perceptrons, and accordingly not
representable simply as lineer forms--might also .be better understood after
exploration of their relation to the ‘theory of these geometric spectra. But
it seems less likely that this kind of analysis would bring a great deal to the
study of the more "descriptive" or, .as they are sometimes called, Ysyntactic"

scene-analysis systems that the authors secretly advocate (Chapter 13).

6.5 _ cterns of COrder 3

6.3.1 Convexity
A particularly: interesting predicate is




im(X) = [X is a single, solid conve: figurel.

That this is of order < 3 can be seen from the definition of "convex': X is

convex if and only if any line-gsegment whose end points are in X lies entirely
within X. Given a suitable definition of tolerance approximation, it follows

that X is a convex if and only if
aeX, beX ==> midpoint ([a,b'])eX

R = ] > <

Toouvex® I‘a'::b rachbchmid([a b]) #x1 11
is of order < 3, and presumably of order = 3, This is a "conjunctivély local"
condition of the kind discussed in §0.2. Note that if a .connected figure is

not convex one can further conclude that it has at least one "local" concavity,

with the three points arbitrarily close together. Thus, if we are given that

X is connected, then convexity is also diameter-limited order 3.
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If ve are nct sure X is connected, then the preceding irgument fails in
the diameter-limited case because a pair of convex figures, widely separated,

will be accepted:

~

S

Indeed, convexity is probably not order 3 diameter-limited, but one should
not jump to the conclusion that it is not diameter-limited of any order,
because of the following "practical" consideration:

Even gjven that a figure is connected, its "convexity" can be defined
only relative to a precision of tolerance. If this precision is not irfinite,
and it cannot be in the diameter-limited case, then either there will be a
bound on the size of the acceptable figures, or some small negative. cixvature

will have to be toleratéd. But within this constraint, one can approximate

an estimate of curvature, and define "convex" to be j curvature < 4nx. We

will discuss this further in §8.3.

6.3.2 Rectangles

Within our square-array formulation of Ez = R we can define with order 3

the set of solid axis-parallel rectangles. This can even be done with




diameter-limited ¢'s, by

[E(pﬂ:' +Eq§ < 41

where all ¢'s equivalent under 90° rotation are included. The hollow

rectangles are caught by

28 ¢ +XZg < 121

where the coefficients are chosen to exclude the case of two or more separate
points. Thesge examples are admittedly weakened by their dependence on the
chosen square lattice, but they have an underlying validity in that the figures
in- question are definable in temms of being rectilinear with no more than four
corners, and we will discuss this slightly more than ""conjunctively=local®
kind of definition in Chapter 8.

One would suppose that the sets of hollow and solid squares would have to
be of order 4 or higher, because. she comparison of ‘side-lengths should require
at least that. It is surprising, therefore, to find that they have order 3.
The construction is distinctly not conjunctively-local, and we will postpone it
to Chapter 7, even though it satisfies the bounded-coefficierit stipulation for
the present chapter.

Another example of an order 3 predicate is

[X lies within a line and has < n segments]
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which can be defined, up to a tolerance, by

X +z = & ¢. +nI (all non-collinear tri les) <. nl
A8 ‘ﬁ! Py ( , ples)

6.3.3 Higher-order Translation Spectra:

If we define the 3 -vector Spectrum of a figure to be the set of numbers
of three-point masks satisfied in each translation equ ‘alence-class, it is
interesting to note the following fact (which is about geometry, and not about

linear separation).

Theorem 6.3.3: Figures are uniquely characterized (up to translation) by their

3-vector spectra, evea in higher dimensions.

Proof: Let F be a particular figure. The figure F has a "diameter"; the

maximal distance between two of its points. Choose a pair (a,b) of points

of F with this distance and consider the set Qab = [qh b x] of masks of order
P A ]

3 that contain a,b, and any other point x of F. These masks must have
coefficients equal to unity in the tramslation spectrum-of F, for if #

contained two translation.equivalent masks

Pa,b,x 3 Py b ax

then one of the distance [a,8b] or [ga,b] would exceed D, for they are

diagonals of a parallelogram with one side equal to D,

g
v
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Thus any translate of F must contain a unique pair parallel to (a,b)- ane
the part of its Spectrum corresponding to Qab allows omne to reéconstruct

completely the figure.

The font that a figure is determineg by its 3-translation spectrum, 4
——ciflned

not, of course, imply that recugnition of classes of figures is order 3. (It
does imply that the translations of two different figures can be 50 separated.
“n fact, the method of §7.3, Applicatiex 7, shows this can be done with order 2,
but only outside the bounled-coe€ficiant restriction,)

The study of the relation between Spectra and ordinary Beometric concepts
is presumably the domain of intggral gtometry, a subject with which we are not
familiar. One would want to know, for example, how much of the spectrum is
necessary to characterize figures lavariantly undeg rotation--and what perception
orders are needed to exploit this spectrum. (Foxr, as in §5.8.1, the perceptron

order may be higher than. the spectra) discrimination order,

about rotdation, ia Chapter 7, suggest that the problems about spuctra under
rotation are quite o bit deeper.

6.4 DPatterns of Oxder 4 and Higher

As shown in §0.2, we can use the fact that any three points detemmine a
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circle to make an order 4 perceptron for .he predicate:

Ix 18 the perimeter of a complete cirele)

by using the form

abe abe

where cabc is the chclc* through %, xb, and %,

Many other curious and interesting predicates can be shown by similar
argumehty to ndve small orders. On should e careful not to conclude that
this means that there are practical conscquénces of this, unless one is
prepared to face the fact that

4)  large numbers of @'s;pay be required, of the order of lle-l
for the examples giv above;

b)  The threshold conditions arp shaxp, so that engineering
considerations may cause ¢ifficulties iniealizing the
lincur summation, especially if there is any problem of
noise. Even with simple square~root noisge, for k = 3 or
larger, the noise grows faster than the retinal size,
The coefficient sizes are often fatally large, as shown
in Chapter 9.

8 very slight change in the pattern definition?* often
destroys its order of recognizability, With low orders,
it may not be possible to define tolerances for
reasonable performance.

4ébin khere is a tolerance probiem: what 18 a circle in the discrete
retina? See §8,3,

% .
% See note at end of Chapter 0,




6.5 s

pectral 'Recomition Theorems

A number of the preceding examples are specisl cases of the following
i theorems, The ideas introduced here are not used later,

The gioup favariance theorem (§2.2)

oo invariant with respect to a group G then
by - .

realized by a form

Y- r;.»: BN, (0]

vhere the Ni are the numbers of 9's in each G-e

quivalence class satisfied
"difference vector

= by X. In §5.2 ye toucned on the spectrun"
] of translations of the plane,

fact the ’u’i(x) numbers up to order i

for geometric
figures..under the group

These spectra are in
=2, If ag-

described by 2ny condition on the N, ‘s for a given
in 1.(#),

invar{ant ¥ cannot be

¢, then obviously ¢ is not
The following results show some conditions

8-on the "i that imply that
¥ is of finfte order,

Suppose that ¥ 1s defined by simulsaneous satisfaction of p equalitfes:

¥(x) = rﬂl(X) = 1n; and N, (x) = n, and .., N (x) = nm'l

where Riy eony n is a finite fequence of integers,

Then ¥ has
maximum order of the 2!

Z twice the
8 assocfated with the Nl's. We will state thig more
precisely as

A




Theorem 6.5.1: .Let

t-hUb UL e,
N X = l{o; get, and g = 1}

=z o(x).
ped,

Then the order of

¥(X) = l'ui(X) =n, for 1 < gl

is at most twice

max{|s(9) |; pet}.

The goal of the proof is to show that the definition of ¢ can be put

in the form of a linear threshold expression, viz.:

Wx = I'z(ui(x) - niz < 17,

As it stands this is Dot a linear threshold combinstion of predicates. To

Tecast it into the desfred shape ve introduce some ad hoc conventions

that will not be used elsevhere. Given any set & of predicates we construct




2 new set of Predicates 4(2)

by first listing a]} pairs of (q&

’ j) of
Predicates fn $ gng defining

Ha® = aem.

Many of the Predicates g constructed

will be logically equivalent,
€xample:

for

these are to be counted as distinct members
that in 2 very strict gense 0(2)

forms" rather than of Predicates.)

is a set of "predicate

Let X be a figure for which
in ¢ are satisfied. Obviously N2
will be satisfied by X, 1.

exactly N Predicates

Predicates of 1(2)
e.,
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f{“fi(z) X -2a q:;i »X) + °1?} = f{ ("1“) - "1) }

To represent the left hand side of this equation ig the standard for for

linear threshold Predicates we define #'

= 9(2) U 2U {the constant function}.

The linear form we wvant is

Za(@) ¢

a(P) = 1 for tpcb(z)

a(p) = -2:1i for cpeii
2

a(constant) = ¥ ni »

Y@ = (o) <11,

= s Usep|
< ',s(q;‘i)l + Is(q)j)l
< 2(Max [S(9)|; ged).




6.5.2 Extended Exact Matchi
w

An obvious .generalization of Theorem 6.5.1 is this:

Suppose that ¥ is defined by

n m
VvV A (Ni =n

),
i=1 j=1 i

i.e , ¥ satisfies Any one of a number of éxact conditions on the Ni' Then

¥ is of finite order, for we can realize the polynomial form

I_n m 2
z Z (N -n Y <1l
f=1 =y  J iy

+ However, the extension now

requires Boolean Products of predicates of different equivalence classes, and

m
‘the maximal order required villbes 2 & 'sk, where 'sk | is the support size
k=1

associated with Nk.
6.5.3 Mean Square Variation
Instead of the Predicates discussed in §5.5.1, we could increase 6 ¢to

higher valuyes:
2
fz(ni - ni) < 81,

Then the system wil} accpet figures for which the sum of the g uares of the
\”k

differences of the Nils and the ni's are bounded by s, Any pattern-

classification machine vill be sensitive to certain kinds of distortion, and

this observation hints that it might be ugefu] to study such machines, and




perceptrons in- particular, in terms of their spectrim-distortion characteristics.
Unfortunately we don't have any good ideas concerning the geometric meaning
of such distortions. The geometric nature of this sort of “invariant noise"

is an interesting subject for speculation, but we have not iuveatiglted ic.

6.6 Figures in Context

For practical and theoretical reasons it is interesting to study the

recognition of figures "in context," for example:

¥(X) = [a subset of X is a squarel,

¥(X) = [a connected component of X is a squarel,

©OX even, to begin to consider three dimensional projection problems:

¥(X) = [X contains a significant portion of the
outline of a partially-obscured squarel.




The examples show that there is more than one natural meaning one could
give to the intuitive project of recognizing instances of patterns embedded.: in
"contexts." We do not know any general definition that might cover all natural

senses, and are therefore unable to state sharp theorems. We do, nevertheless,

claim that the general rule is for low order predicates to lose their
property of finite order when embedded in context in any natural wvay. To
illustrate ‘the thesis we shall Pick a particulariy common and apparently

harmless iﬁterpgetation:

*in context(x) = [¥(¥) for some component, Y, of XI.

It will be obvious that the techniques we use can be adapted trivally to many
other definitions.

Intuitively, we would expect *in context '€ be much harder for a perceptron
since the context acts as noise and the parallel operation of the device allows
little chance for this to be separated. from the essential component. The point
appears particularly clearly in the cases where ¥ uses rejection rules. These
cannot be transferred over to *in context for very obvious reasons, Similarly,
we loose the stratification methods of Chapter 7 and, indeed, most of oux
technical tricks used to obtain low order representations of predicates.

The next two theorems show how this intuitive idea can be given a rigorous
form. It should, however, be observed that no simple generalization is possible
about the relation of ¥ to *in context since some ¥'s become degenerate in

context. For example, every set has a connected subset of odd parity and every

set has a connected component!

e
LT S oM
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Theorem 1: Let R be a finfite square retina and let ¥(X) be

¥(X) = [X 1s exactly one horizontal 1line
across the retinal.

Then ¥ is of order 2 but *in context is not of finite order.

Proof: We leave an an exercise the proof that ¥ as defined has order 2. To

show that *1n context is not of finite order we merely observe that it is the

negation of the negative the one-in-a-box predicate, ¥ Let cl be the

1.
m X m array of unshaded points discussed in {5.1. Taking this as our retima,

the predicate §  3sserts that there is not horizontal white line across the
retina. Its negative, in the secae of §1.7, asserts that there is mo
horizontal black line. Since ¥ 1 is not of finite order, the argumeat of
§1.7 shows that the same is true of its negative. And by reversing the

predicate’'s inequality we find the same is true for the desired

¥ = [X contains a horfizontal line across
in context ., o retinal.

Theorem 2: Let ¥(X) be

X 1s & hollow squarel.

Then. tt n context is not of finite oxder.




in this case, order 3.

Note: An alternative Proof method is to fold the lines of switching elements

used in the Huffman construction for connectivity(§s. s)




CHAPIRR 7: NORMALIZATION AND snmncnxon
-—“‘——*————‘———‘_____—_
7.1 Equivalence of Figures

In previous chapters we discussed the recognition of patterns--classes
of figures--closed under the transformatfons of some group. We mow turm to
the related question of recognizing the equivalence, under a group, cf an
arbitrary pair of figures. The results below were surprising to us, for we
had supposed that such problems were not generally of finite-order. A number
of questions remain open, and the superficially positive character of the
following constructions are. ctlouded by the apparently emormous coefficients
they require, and the manner in vhich  dey increase with the size of the retina.

A typical problem has this form: The retima

ia ptesented*u two equal i)lttl A and B and we ask: 1s the figure in parc B

a rigid translation of the figure in paxt A? More generally, is there an
element g from some given group G of transformations for which B is the result
of g operating on A? What order pPredicates are required to make such
distinctions? The results of this chapter all derive from use of a technigue
we call atratification. Stratification makes it possible, under certain

conditions, to simulate a sequential’ process by a parallel process, in which

* All the theoyems of this Chapter apply direcely to perceptrons on infinite
retinas; that is, without having to consider limiting processes on sequences
of finite retinas.




the results are so welghted that, if certain condirions are satisfied, some
computations will numerically outweigh effects of others. The technique
derives from the following theorem:

Theorem 7.2: (Stratification Theorem)

; Let I = {:tl, :!23 N Rj’ ««.lbe a sequence of predicates and define

3 sequence cl’ ceey Cj, «++ of classes by

XeC, <—>Ezj(X) A®>j '->~xk(x))]

Thus X is in (.:j if J is the last index for which ni(x) is true.

Let & = {cpi} be-a family of predicates and let il. cees ij. ««« be an

ordered sequence of predicates in L(%) that are each bounded in the sevur e
for each *j there is a linear form with integer ceoefficients

?. - 8 such that

L=
.a h 8

ij

F:j>o‘l

a0d that there exist bounds B, such that Iz, < B, for all finite |x|Y,

Then the predicate ¥y =T Xch - ij (X) 1 obtained by taking, on sach L.‘j,
the values of the corresponding y‘j» iies in L(®+1), that is, can be written

is a form

The prorf actually requires only that IEJ (x)l be bounded on each Ck’ i.e.,
son-unifol. ly.




WO = | Sy g Ag) > 6.
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The partition into Qj X).
Fig. 7.2.1

Usuaily it will be the case that for any finite le. X will lie {n oma

of the cj. Otherwise we will be interested only in the values of ¥(X) fou

x:ch.

The proof is by an inductive construction. Define

St &

nj = ncax lsj-).l
i

S, =S§

5 - M +(mj+l)~n3‘$j‘

15




The boundg Bj Lxeure the xistence of the ¥, °

y 8§ Now write the forma) sum
Senerated by thyg {afintee process g

S=¢% ajk njﬂﬁi

and we will show that §(X) = | SX) >0 3
be

The infin{te Sum is well-duftm‘d
cause, since each X i3 in sone cj‘ there wil) bq only finjte
with each nj

torm. BASK: 1o is
VX): = S{(X) >0 1,

supg assormtgd
clear that i X is in (2‘i the

= ll S0
INDUCTION; Assume that i¢ Xis in ¢ -
WO =Ts x>~ L

-1 Now the

1 then
coefficlents are dntegers, go if Xeg,,
and

'|j‘1

1) i ¥(X) then Sj 18§ =M, -y

] . ‘J+2NJ + 1w
1) if~ VX)) then &

S 3 - \N
Y OSQSJ\HJ }ij'ﬂ.

uorollary 7.2:

degree in @

The order of VX) 1s no lavger thay the sum

! (‘:3\ € Lt ty
and the naximen support in I

This follows bevause iy

Madd
in ¢ eQQur

only g conjuncts wieh bredivates {y 1.

hat the domatn of Y o

with the disjotnt “epy
Stratum the '"JHJ tem negates deciat,
test ig passed,

vie by Wied e

atg . v l", Tirhin fach

ons made- on low
In all applicationg below

less, the different possible
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Hence there iy o cloge connoction betyioen the PoNsi ULy of constencting
"seratifiad" sfudicates, and the conventional "

paLtern recogniefon'
of identifying a figure first by

Koreept

normalizing it und then by comparing the
normalized image with a pPrototype.

It should bi: noteq that predicates obtained by the yge of this theorem

‘will have énormous coefficients, growing €xponentially oy faster with the

Thus the results of this chaptey
considered of practical interest,

stratiTication index 3. should not be

They are mnre of theoretical interest in

showing something about the relatfon--or perhnhn‘gon-relation--of the structure
of the kransformation 8roups to the order of rertain predicates invarianc
under those groups,

7.3 Application 1: Symmet ry along a Line

Let Rv- 260y x,

{ °*+- be the points of an infinite 1inear retina, {.ec.,
°°<xs < o

’

ANAD W] | §

3

Suppose -that X {s a figure in ‘R with finite lxl. We ask whether the predicate

WSYM(X) = [ X 1s symmettical under reflection* 1

——

The important thing 1s that the :s
advance, and may occur anywhere alo
any difficultiy with thig section,

ymmetry center is not specified in
ng the infinite line! 1If the reader hq;
he :should read § 7.9 first,




i

is of finite order.

We will “stratify" 'ﬂll by finding sequences

2llow us to test for symmetry,

"find" ths two "endpointe" of X and esch of the ¥,s

of & figure for the corresponding pair of endpoints.
to defineé the “1"' 8o that each cj vill be the class
pair of endpoints. To do this we need 8

ségment s (xa.xm) for any s and ‘for any d 2 0, 4ith

? o e to be

tera f(x.,x.“) must follow any term (x

There do indeed #xist such sequences, as shown in Fig

-Xl - 8080 - xo

17 ++- and *1’ ++» that
using the foliowix_gg trick:

.*.’X.’_&H‘,) with 0 =< 3 £a+ b <4,

the x 1‘3 will

will test the symmitry
OQur goal, then, is

of figures with a certain ,

an enumeration of all g

the property that any

. 7.20 1-10

, o
o[

%3 * X%, 5 -
‘x‘. - x‘l :: -] :
s = %1% 12
X *x x e
6 “171 ) ©

\117 - xzxz .-gz 5 L4 |

g T % =R IG

3

3

and it can -be seen that i ; 2

1)  each segaent occurs eventually .and 2

11) no segment 1s -ever followed by ancther that 1jes within 1it.

3

*: Pt s * . o ! ~ e
. . Lao 1S D T e sy VU T} SR
A e N5 vt o M st




Therefore, if Xg*Xopg ALE the extreme left and right points of X; then

X will lie in precisely the C., for that (x.,x tl»d)° Now define

5 ¥, to be

3

ij=rxm=xﬂ_d_i,1¢0, eeo d 1

or; equivalently,

d
¥ = f.f;‘ (o) - x_, ) €07

showing that it is a predicate of order 2 vhich is bounded, with B 5 <.
So, finally, application of the stratification theorem shows that

*SYH ‘has order < 4, since the y's have order 52 and the #'s have support 2.

7.4 Application 2: Tran.lation-(:oggr_uence along a Line

Let ..., i‘a" ce. and ..., yt, ... be the points of two infinite linear

retinas, i.e., - ®» < x’,yt <4 o

YYD , ]
Xq Xg

Let X be a figure composed of a part XA in the left retina and a part XB in

the right retinz. We want to construct tm“(n = [the (finite) pettern in A
: is a translate of the
pattern in Bl,

To "stratify" tms we heve to find a sequence xy that allows us to

. . .
ot e & e Y vk e 02 it ool B e 5 e e o

,

s 2 b massnss M S

test, with appropriate ’i"’ vhether the A and B parts of X are congrueat.,

We will do this by a method like that used in 'f 7.2.1 but we have now to handle

o ey T




two segments atmlt-nguly, That {s,

Ve need a sequence of nj S that

enumerate g1} quadruples in Such a way that

2 figure lies in Cj if and
only if the ndpotats of its 4 and B parts are Precisely the Corresponding
values of X0 x

> There does indeeq exist such a Sequence (!,
o, by

'sof §7.2.1 as follows (the reader might

sk 0 be the four-point megk obtained by

The:mast i Sequence requires yus to

enumerate ajj x 's
the condition thet 20 X.b SR precede any Xd ifboth 3 = and b 2 ¢,

A solution is:




2

3

1(11; 121; ‘12’ xzz; X'zl’ ij’ lus x, 3, 1(33; .4 1: XQ, x“, x l.’ XZ‘, ces ¢

and for the ‘jk ‘term in this sequence, an appropriate predicate ?( &) is:

¥(jk) = [the segments defined by n, and x have
the same lengths, and the x's and y's
in those intervals have the: same values
at corresponding pointsl.

This is an order 2 predicate, and bounded (by the segment lengths). The

T j'l now have support 4, so .tm.vs(X) has finite order < 6. Actually, having

found both extrems of X,, it is necessary only to find ons end of Xy» $0 a

slightly different construciion using the method of §7.9 shows that the order

Of *ms is 55.
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7.5 Application 3. Trauslation on the Plane.

The method of application 2 cqn be applied to the problem of the two-

dimensional translations of a bounded portion of the plane by using the

ﬁollowing trick:

Let each copy of the retina be an (mx m) array, Arrange the syuares into

e

a sequence (xi} with the square at (a,b) having index ma + b. In effect, we

treat the retina as a cylinder and index its squares so:

S Semm comt e v e canea s

This maps each half of the retina onto a line like that of application 2

in such a way that for limited translations that do not carry the figure % over

the edge of ‘the Xretina, tranclations on the plane are equivalent o translatiagg

on the line, ‘and an order-5 predicate can be constructed. In § 7.6 we will

show how the ugly restriction Just imposed can be eliminated!
Application 4. 180° rotation about undetermined point on the plane.

With the same kind of restriction, this predicate can be constructed (with
order<4) ftom‘appliéation i by the same route that derived application 3 from
application 2, Similarly, we can detect reflections about arbitrary vertical axes.
7.6 Repéated Stratification.

"In the conditions of the Stratification Theorem, the only restriction on the

wj's is that they be suitably bounded. 1In certain applications, there jis no
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reason the y,k's themselves cannot be obtained by stratification. This is

3
particularly easy to do'when the support of ¥, is finite, for then boundedness

k|
is immediate. To illustrate this repeated stratification we will proceed to
remove the finite restriction in Application 3.of §7.5.
First enumerate all the points of each of two infinite plane retinas A and B

according to the more or less arbitrary pattern:

: B = .
T
to Obtain two SGQU&C“ Zl, ""zS\(’ eee 8ndzl’ sesy st, e

We had a similar problem there, only now it is a two-dimensional version.

Now we will invoke precisely the same enumeration as in 7.4, but defining

ik X) = (75 € X, a Yy € Xh) - za-gk

Then C(jk) is the class of pairs of figures whose highest (in the x~-enuseration)

point of xA is xj and highest point of XB is Y




We need only a (bounded) *(jk) that decides whether XA is a translate of
xB for figureg in Chk But the figures in Cﬁk all 1lie within bounded portion;
of the planes, in fact within squares of about [uum(j,]‘)]"2 on a side around the
origing! Within such 4 ‘'scuare - or better, within one with twice the dimensions,
to avoid "edge~effectsg" - We can apply directly the result of application 3,
Chapter 7.5 to obtain a predicate *(jk) with exactly the desired property, and
“with- finite support! The resulting order is ¢ 5 + 2 = 7. (We have another
slightly fallacious construction that yields order~4, so.we Suppose the trye
value to be .somewhere in between). The same arguments can be used to 1lift the
restrictions in application 4, Chapter 7.s.

7.7 égglicatiéh 5. The Ax;t-garallel Squares in the Plane

We digress a moment to apply the methiod of the last section to skow vhat

the predicgte ch(x) = Ii is a goiid (hollow) axis~-parallel squaré1 » (that is,

of the form anywhere in the Plane) has order ¢ 3.

gran 7R 7\
2N\ ‘)
AN NN

sides must be compared in length while the interior ig alsc tested, suggest orders
of at leagt 4. The result wag discovered and Proven by anothet method by our
student, John White).

We -enumerate the points X)» cee, of @ single plane, just as ip § 7.6

and simply set "j = !j. Then Cj is the set of figures whose "highest" point i xj.




e 1

can

If X is a square, the situation is 1like oue of the cases shown:

e ~—s

/\-S‘;‘,

We thea constfhc;.wj by stratifying as follows: Let‘xi, xg, vee xgj be the
finite sequeuce obtained by stepping into the spiral figure orthogonally from ﬂ%,
Define ni;i ii so that Ci will contain all tke 8quares of length i on g side
that are “stopped" by xj. But there is only one such square, call it si. 'So to

complete the double stracifiqaiion we need only provide predicates wj

ito

Tecognize the squa: es Si. But this can be done by

ke
AP E R
wes) xgsd

which is of order=l. €5y hag order ¢3)
Q.E;D.

under translation and size changz?




Some reflection about tche Tesult and methods used in § 7.6 ard

’

7.7 will Suggest that we have all the ingredients, for 7.6 shows how to handle

translation, and f 7.7 shows how to recognize all the translations and

dilatations of g particular figure. Now dilstation involves serious complications
with tolerance and resolution limits, tn so far a8 our theory is still based on
a fixed, discrete reting, and we do not vant to face thi: nriblem squarely.
None. the legs, gttiSuihzerégiing,ghqt.the(aesixéd Property can at least be
8ppioiysated with finire oL, ir.au intuitively suggestive fashion,
not. think that g similae approximation cap be made in the ¢
invariance, bec:use the a:bﬁlei there ig of a different kind, that cannot be
blamed on the discrete retina, it 13 buecause the transformations of 1
rotation group cannot be simply ordered, and this "blockg" stratification-like
methods).

Our method begins with the technique uged in $7.6 to find predicateg
" (1K) that "catch" the two figures in boxes. Then, just ag in§ 7.6, the
problem is reduced to finding predicates w(jk) that need only operate within the
-boxes of fig, 7.6-1. We construct the *(jk)" by a brutal meth-d; within each

box ‘we use the simple enumeration of pointsg described in Chapter 7.5. Then we

stratify four times (!) in 8uccession with respect to;




(1) x = highest and leftmost point of A
(2) y = highest and leftmost point of B
3) x’ lowest and rightmost point of A
(4) y'= 1lowest and rightmost point of B

We will need to define predicates ’Ss)x' y' for this. If the two vectors
3 »

TV and X' - y;' do not have the same direction we get ¥ = 0; otherwise

we uced a § to test whether or not for every vector displacement v

x-x' »
y-y ¥

y+ v x +
and this is:an order-2 predicate, leading finally to total order £24+44+2=38,
Of course, on the discrete retina the indicated operations on vectors will be
ill-defined, but it seems clear that the resuit is not vacuous: for example,
we could ask for recognition of the cage where X3 1s a translate and an integer-
multiple of XA in size, with each black square of xA ‘uapping into a correspondingly
larger square in x’.

7.9 Application 7. Equivalents of a Particular Figure

In constructing y for application 5, we noted that one can alvays comstruct

an order-1 predicate to detect precisely one particular figure xo (by wsing

r 224. Ex 3 i] ). It follows that if We can construct a stratification

2, 241,

{n i} for a group G such that for all 8€G

xsci/\sxt:ci = (gx -X)V(s-e)

then we can recognize exactly the G-equivalents of a given figure X o {with one

order higher ‘than the order used by the stratification »'s). This is




Suggestive of a machine that "Pre-processes"

a Normal Fornm,

{

Let ) = rxjcxl 2zddsey

ighorig for the moment pointi with

"’éage-ef'fect;" we obtain 5 Predicate

" ‘thHe ‘translates of X.

in extending this to the two-way fnfiniee line,
::i'a in the order

3 and if it ig in a Cz:l +1 W¥e will have found itg rightmogt point XJ. In either

’




tase we can construct an appropriate y. Hence, finally, ve see that thete

exists for any given figure xo & predicate of oixder-2 that Tecogniaes ptecisely
the livear translations of xo, and there is o probles about boundedaces besause

all y-supports are finite.

7.10 rent Parado

Consider the case of X = . k\\\% |

We have just shown that there exists an order %2 y that acCepts. faat the

translates of this figure. Hence y st reject the Won-equivalent figure,

o W But doth of these figures have exactly the seme
R )

n-tuple distribution spectrun (see Chapters 6.2 ang 6.5) up tc order-21 Bach

has 3 points, and each has 1 adjacent pair, 1 pair two unitsg spart aad 1 pete

3 units apart. Therefore, if 211 §roup-equivalent ¢ 's had: the Same velights, an
order 3.3 perceptron would be needed to distinguish them. Thus 1f we could

apply the group-invariance theorem we would in fact obtatn o Proof that g9
rerceptron of order-2 can distinguish between thege. This would be o contradietion?
What is wrong? The answer i that the group-invariance theorem dous met 1n gemeral
apply to predicates invariant under infinite groups. When & group is fiatee, L 1Y 198
¢yclic, as in the toroidal Spaces we have vongidered from time to time, one ean
always use the group-invariance theorem to make equal the coafficients of oquivelene
$ 's. But we camnot use it together with attgq;fication, to construct the ptedicate

on infinite.groups.
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¢'s; then the SToup-averaging operations do not,

be shown ag & theorem in Chapter 9.4,

7.11 Probless

A number of 1ines of

in general, Jvetge, Tis w2

dwrestigation are iatriguing: vha
ﬁicauou.
deécompositions of the group;

between the Possidle gtrat

6( Predicates canp the 3roup-1uvcrilngc

What predicates have bounded coefficien

theoren be extended to lafinite greuge?
te in each oquiv \ence clags,

For a long time we thought that equivalence Problems, 1the thet of

§7.5 and§ 7.6 were not of finite order,

Stratification vee surpriaing,
2.

Stratified Predicates probably
huge coefficients, We

that the coefficients grow mwmmm 12 R, 1a general,
3. A

stratification seemg to correspond to serial machine thet opetates
figure, with o Séquence of gro

Sequentially upon the Wp tramsformstion clenente,
some special event occurs, o:itabuahiu ite membership in 'cj. and then

1 —
tm oo
e

until




.
. @

.
e gbay e P
e i

-
LI

lL

4

K i
K |

e S

widp
I A

s

CHAPTER 8r  THE DIAMETER-LIMITED PERCEPTRON

s chapter we discuss the power and limitationg of the

"diameter—limited" Peérceptrons: thoge ip which each ¢ caa see only a

circumseriped portion uf the reting R,
ghted evidence about 8 picture

obtaiied byvexperimentét¢i each of which report on the gtate of affairg

small compaited with the full dimensions of thé sp That is, p should be

small enough tfat none of the ¢'s cari- see the whole of ap interesting figure

(or else we would not have an effective limited-diameter situation, ang there
would be no1ihteresting theory) but p should be large enough that

“hance to detect an interesting "Tocal feature" of the figure,

8.1 Positive Results

CAn recognize, and then some of the things it cannot

8.1.1 Uniforn Picture

A diameter~11mited Perceptron can tel} when a picture is entirely black,

°r entirely white: choose ¢i's that cover the ret

*verlap) and define ¢i

“hite. Then

1f «ne picture has ope Or more black pointg,

and not if the Plcture ig blank,
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Similarly,

‘We could define the ¢i's to distinguigh the all-black Picture froe
all others.

r , These patterns are recognizable becauge of t

heir "conjuuctively local"
character (zee Introduction);

no ¢~unit gan really say that there s
2vidence that .the figure ig all-white (for there is on

correlation witl,

strong
ly the slightest

this), but any ¢ can definitely 8ay that it hag conclusive

evidence that the picture is not al1 white. Some interesting patterns have

that one can reject ali pictures not in thbe class becauge

somewhere or other,

this charac;er;

each must have,

a local featyre that ig definitive'lnd

i
can be detecteﬁ:by what happens within a region of diameter D, )

8,12 Area Cuts

oG We can distinguish,
' is greater than S. To do this we define a ¢i for each point

‘t0 be I if that
point ig black, 0 otherwise.

Then
/

i z x, > S

.. is a recognizer for the cluss in question,

8.1.3 Noq:intersecting Lines
One -can say that a .pattern ig composed of non—intersecting lines if, {n

A each small region, the pattern contains at most one line-segnent, If we make ;

.3 each ¢ kave value zersc when thig condition ig met, unity when it is not »
&

Lé;>0
will reject ail figures not in the class,

8.1.4 Triangles .and Rectangles

. . We can make a diameter-limited Perceptron recognize the figureg consisting (‘E




of exactly one triangle (either solid or outline) by the following trick:

We use two kinds of ¢'s: the first has weight +1 if its field contaiuns a
vertex (two line segments meeting at an angle), otherwise its valuwe is zero.
The second kind, 3; » has value zero if its field is blank, or cgntains a
line segment, solid black area, or a vertex, but has value +1 if the field
contains anything else, including the end of a line segment. Provide enough
of these ¢'s so that the entire retina is covered, in non-d.zrlappingrfashion,
by both types. Finally assign weight 1 to the first type and a very large

Positive weight W to those of the second type. Then
A
z¢i-wz¢i < 4
will be a specific recognizer for triangles. (It will, however, accept the

Flank picture, as well). “Similarly, by setting the ¢'s to recoguize only

right angles, we can discern the class of rectangles with
A
z¢i+w2¢i <5

A few other geometric classes can be captured by such tricks, but they
depend on curious accidents. A rectangle is characterized by having four right
angles, and none of the exceptions detected by the /¢:’s, In f 6.3.2
we did this for axis<parallel rectangles: for others there are obvinously move
serious resolution and tolerance problems. But there is no way to recognize

the squares, -even axis-parallel, with diameter-limited ¢'s; the method of

f 7.2,5 can't be so modified.

* Of course, this won't work when a vertex occurs at the edge of a ¢-support. By
suitable overlapping, and assignmént of weights, the system can te improved, but
it will always be an approximation of some sort. This applies to the definition
of "line segment,” etc., as well as to that of "vertex." See f 8.3,




&.1.5 Absolute Temglate-matchigg

Suppose that one wants the machine to recognize exactly a certain figure
Xb and no-other. Then the diameter-limited machine can be made to do this by
Partitioniug the retina into regions, and in each region a ¢~function has a
value 0 if that part of the retina is exactly matched to the corresponding

part of Xb, otherwise the value is 1. Then
);¢i<l

if .and only if the picture is exactly XO.

Note, however, that this scheme works Just on a particular bject in a
particular posjition. It cannot e generalized to recognize a particular object
in any position. In fact we show in he next section that even the simple,t
figure, that consists of just one point, cannot be recognized independently of
position!

8.2.1 The Figure Containing One Single Black Point

This is the fundamental Counter-example. We want a machine

To see that this cannot be done with diameter—limiting, suppose that

{¢i}, {ai} and 6 have been selected, Present first the blank picture, Xy

Then if f(x)-Zai¢i(x), we have f(Xb) < 0. Now present a figure, X],

o

containing only one point, ;- We must then have

f(_xl) >
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The change in the sum must be due to a change in the values of some of the

¢'s. In fact, it nust be due to changes only in ¢'s for which xeS(¢), since

nothing else in the picture has changed. In any case,

f(Xl) - f(xO) > 0. (1)

Bl womsrn i i e
ces 5 R

Now choose another point x which is further than D away from x. Then 5o
S(¢) can contain both X} and x3. For the figure Xz containing only X7 we
must 2136 have

! £(X;) = fa¢. > 0 (2

Now consider the figure X;, containing both x; and X2 . The addition, to Xo
of the point x; can affect only ¢'s for which xeS(¢), and these are changed
exactly as thyy are changed when the all-blank picture Xo is changed to the
Picture X;. Therefore

£12) = £(X,) + [£(x;) - £(Xp) ]
and by (1) and (2),

f(xlz) >0

‘but we require that

£(X;5) <o
Remark: Of course, this is the same phenomenon noted in Chapter 0.3 and in
Chapter 2.1. And it glves the method for proof of the last statemept in
Chapter 8.1.4,

8.2.2 Area Segments

The diameter-limited perceptron cannot recognize the class of figures whoge

areas A lie between two bounds Al <A< A,




-6~

Proof: this follows from the method of $8.2.1, which 1s a special caee: of
this, with A) = 1 and A, = 1. (But using the method of § 1.4),
example (vii), this recognition is possible with order 2 if .the diameter-
limitation .ig relaxed).
8.2.3 Connectedness
The diameter-1imited perceptron cannot decide when the picture is a
single, connected whole,
At this point the reader will have no difficrlty in seeing the formal correctness
of the proof we gave of this informally in Chapter 0.3.

‘Proof: consider the four pictures

Now figures xOl and xiO are comnected, but xOO and xu are disconnected,

Suppose that there were a. get of ¢'s and a's and 8y € L(®) for which

Lagd (x) 30

Lag, (xpp) < 0 Log,x) <o




o
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80 that these four figures were correctly separated. But then, just as ia the

Previous argument we would have for all ¢ 1

¢ (X3) = ¢, (X30) + ¢, (Xo1) - ¢; (Xo0)

because the two changing. reglons are more than D apart, hence
Lad, (X)) 20+6-0=0p

contradicting the separation requirement.

8.3 ter- ed Integral Invariants

Ve observed in §6.3.1 that convexity has order 3, but that the
coutmcuon used there would not carry over to the diameter-limited case
Neam it would not reject a figure with two widely separated convex components.
On the other hand, § 8.1.4 shows how a dismeter-limited predicate can
capture some particular coavex figures. The latter construction generalizes,
but leads into serfous probléas about tolerance and, really, into questions
sbout differentials.

Suppose that we define a diameter-limited fanily of predicates 0 using
the following idea: Choose 80 €>0. Cover R with & partition of small cells
C,. Yor each integer k define ij to be 1 if Cjnl contains an "edge" with

3
clun.c-tn-diuction >ke and otherwise ’jk s (,

Boaction-chongt

. et P Y e s e s
Lo b .

.- NS 3 e S .
. i ki O piti
: -
.




Now consider the "integral"

IL ¢-¢,

e Jk

The contribution to the sum, of each Segment of curve will pe € -;f-c c

where ¢ ig the change in direction of the Ssegment, hence the total sum {s

the total “curvature" or, rather, the total lcurvnturel. Finally we claim

that we can "realize" ¥ convex ag

Yconvex ™ c: €k < 2"_’

because the total |cutvature) of any figure must be > 25 and only (and all)

convex figures achieve the equality. ye 1gno£e figurés that reach the edge of
. . . (SN 4

i
the-retina.and such matters. e ] .

A similar-argument can beé used to construct a predicate that uses the

signed curvature to realize

-

6(X)< n SR
the functionsg of the guler characteriatic, since thae invariant ig Just the

total ;igned Curvature divided by 2n. e

P .

One could go on tc-describe more aophisticatedgpredicatea Ehat élaslif}'

figures by properties of their "differential spectrs. "

number of serious questions about tolerances and approximations, There are

Problems about the uniformity of the Coverings, the §izes of € and the dizmeter~

%
.

j,,,and problems T

; :;"”s-"-‘" ) -;
' <
.

limited cells C
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about the cumulative €ITors {n summing small approximate quantities, Certainly
within: the 82 * R square map described in Chapter 5, or anything like ic, a1l
such predicates will gix» peculiar regules vhenever the diameter celis are not
large compared to the underlying mesh, or sma1] compared to the relevant
features of the X's.

For example, we can regard the recognition of_tectangle:, a8 done i~

Chapter 6.3.2, ag a pure artifact in this context, because it 80 deperids on

Teasonable gize ranges.
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CHAPTER 9: MAGNITUDE OF THE COEFFICIENTS

9.1 Coefficients of the Parity Function YPAR

r—

In B3.1 we discussed the predicate ?PAR(X) = f]x[ is an odd nuaberl
and showed that if ¢ is the set of masks then all the masks must appear in
any L(2) expression. One such expression is

¥ = ye-2) 5] <-
par® = [2¢-2)"" 1y, (@) < -1
which contains each mask By with coefficients. that grow exponentially with

We will now show that the coefficientg
must necessarily grow at this rate, because the sign-changing character

of parity requires that each coefficient be large enough to drown out the

the support-size of the masks.

effects of the many coefficients of its submasks. In effect., we show that
YPAR can be réalized over the masks only by a stratification-like*technique!
So suppose that we have YRAR ='r2aipk > 0l. Suppose also that the group-
invariance theorem has been applied to make equal all a's for p's of the
same support-size, and suppose finally'that the discrimination of YEAR is
"reliable," e.g., that Eaipi 2_2 for odd:parity and Zbiui £ 0 for even par-
ity. (We use "2" instead of "1" to.make the proof slightly neater.) Then

we obtain the inequalities

Q 22
o, + 20 <0
oy + 30y + 30, 32

* But not by stratification itself, because the order cannot be bouncad.
In this Chapter we return to finite ‘Rl spaces.

J2E A




o 4
or ,

n

n 32 if n 13 odd
igl (i)ai €0 if n is even

T , ’ "m
e uWrme

Subtracting successive inequalities, we define

oy om OO £

D, = n‘é:l <n:1> o g(i‘)%
e+ % ,[(n?)- (:)]“i "a .+ g 6:1) a, .

S W s

=

L

=




The left-hand side is

’{(A i -l °k+1(k) (H) ok o & 3 -1 %x(k\(u)

in0 kw0
7y (Mt
- o o Tt
k-zo ;EK Net1 (m Qo )
M M o1
) kzo 1Xk (.1) et (k! (H-k)!)< 1-k)!l%-1$|

M M=k ' 3
-1 o () -1k jgo (Ts‘o":':%;')‘x‘) -1)

M M k M-k
- -1)
- Cet1 <k) S G
k=0
" %a "

e

80 we have;

Theorem: the ratio f the largest coefficient to the smallest coefficient

of any mask must exceed:

2M
), — =
2

1Mo,

a

2M-1

1
These values hold for the average, so if the coefficients of each type are
not equal, some must be even larger! This shows that it is impractical to
use mask-like ¢'s to recognize parity-like functions: -even: if one -could

afford the huge number of ¢'s, one would have also to cope with huge ranges

of their coefficientsi

. u . 5 . P — R R o J— - — i B, ¥
e D L D I Y s
L ” o v ~
e L R o N e+ < s, ;
3 i :
P RE A A N
ot . oimrrm——p————"
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Remark: Thig has a Practically fatal effece on the c'tresponding loatning

{ai} of Coefficients ig 8reater thap that needeq to store the entire get
of Patterng recognized by WPAR ~ that is, the éven subgetg of R, For, any
uniform Teépresentation of the ui's must alloy IRI bits for each, ang since
there are 2/R| Coefficients the total numbe~ of bits Yequired 1g IR] - ZIR'.
On the other hang there are ZIRI"1 €ven gubgetg of R, :each representable by
- 2[R~

an |R|-bit 8€quence, go thae |R| bits woulg suffice to Tepresent

the subsetg,

information, and non~unifofhity of coefficient sizes woulq be €xpected to raige
this by 4 substantig] factor,
9.2 Coefficientg Can Grow Even Faster than ggponentgallx in|R] |
It might pe Suspected that wPAR is a gort of worst case both becauge
(a) parity ig 4 worst function and (b) masks p 1. g worst ¢, 1q fact the




¢
Let R be a set of points, Yyr eees Yy Zys cees Z) and let lYi] and 521}
each be enumerations of the: ' subsets of thé y's and z's respectively.
Then any figure X C R has a unique decomposition C = Yj U zk.

We will consider the simple predicate :

EQ’

1:1_:(2(Yj Uz) = [j = x1

which simply tests, for any figure X, whether its Y and z parts have the same
positions in the enumeration. The straightfoxrward geometric example is that
in which the two halves of R have the same form, and Y1 and ZE'ate
corresponding eets of y and z points.

We will construct a very special set % of predicates, for which va s L(§)
and show that any such realization must involve incredibly lazge eoecfficlaacs!
‘We want to point out at the sturt that the & we will use was designed for
exactly this purpose. In the case of *PAR we saw that coefficients can grow
exponentially with the size of IRi; in. that case the & was the szt ~f maska,

a natural set, whose interest exists independently of this problem. To show
that there are even worse situations we construct & % with mo other intevest

than that it gives bad coefficients.

We will define ¢ to contain two types of predicat=s:

b, Uz = 1= Kl

™
y,i(yj Vz) = (3 = kal = k) (§ = k-1,1 < k)1

each defined for 1 = 1, ..., 2", Note that IS(¢1)| = n and |S(li) = Zn

7 v N - % |, <

ot
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FLLGt we must show that wl‘Q € L(®). But consider the proposed form:

rwm‘ - 2, ~xp) <1

Case X: 3 &k

Then wn -1 and Xk o 1 hence WEQ‘~ r;k(l -1) < i-l =]

I K Jek-a

Thea only V=1 amd "EQ - r2k <1-. -0

IIX: 3 k -~ 3

Then wk;‘-lund x:iil fori‘l. sy k-l‘

wEQ t,.2“ - kil 21 <1~,~‘ - j[: <~.'*

1" =0
i=1

and the predicate holdi only for the J=K

Case, as it ghould,
is indeed in L(e).

$o ’IQ
Now we

eiitablish bounds on the coefficients. Consider any expression

iy = [2“’1 RPN > o]

Then for sets Ykﬂuzk we get Bk <6,

for sets \:k Zk we get %y, + Bk >0 +1,

:ﬁr-‘ﬁ-!-‘é-u&nw-

and for gets Yk-luzk we get




We can get 9 = by subtracting it from every 8, since just one 8

&ppears in each inequality,
Then 81 £ 0 and @ 2 1. Then, since

ak 21+ “1 + ... + ﬁk-l

ve have immediately o9 32, ag 34, sl ;21—1

n=-1
Since the index J runs from 1 to 2% 2

» the highest a mugt be at least 2

times as large as the initial separation cerm~(ql+ 81)—81 = a,. This
incredible growth rate is based in part on a mathematical joke: we note
that an.expression "J «k" equivalent to that for wEQ appears already
Git;in the definitions of the xi's, and it is there Precisely to not-quite-

fitally weaken their usefulness in L(®).

¥ -

Thus, one can not conclude that

the WPAR result is just due to the poor choice of the set of magks for ite

¢-base. (Problem: find a ¢
e 2IR|- constant.
.2 » Solution in Chapter 9.3).

that makes the coefficients of wPAR grow like

Ironicaliy, ¢€.ye write WEQ in terms of masks we have

WEQ = ri Myi + Mzi - 2Myi;i < I]
. anqd the coefficients are very small indeed!

Problemg: In 9.1, ¢ has 2,R, elements and wPAR requires coefficients like

R
2'R,. In 9.2 ¢ has 2;'5,Rl elements but the coefficients are like 22

It 1s possible to make ¢'g with up to 22,R,

elements. Doeg this mean ‘there

R
are y's and ¢'s with coefficients 1ike 222 ?

(We think not. see { 9.3),




stratifica,tion. "
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9.3 Predicate With Possibly Maximal Coefficients

Define | le | to be the index of X in an ordering of

all the subgets

of R. We will consider the simple predicate

q’HPAR“ = ﬁlxll is odd-,

with respect to the following set ¢ = {¢ ] l} of predicateg:

0if ||X]] < 1
ay (X) L4f [|x|} =
X! - 1) mod 2 1£ |x|| » 4

Then *HPARH is in L(¢) and is in fact realized by

“Ilear)| = rz"l’iFi"i ol

uhgre‘ri is the i~th Fibonacci number:

(Rl =f1.2, 2 3,5,8, 13

s eee Jo

Theorem: any form in L(%) for wl IPARH must have coefficients at least this

large; the Fn 8row approximately as

1 /5-_‘_lnm 0.7n
BCT o V2

so that the largest coefficient is then like

o 2505 + 1) 2"




and the reader cap verify that thig implies that for

all
,ai +1, 3 ,ai, + 'ai—ll




Dggggiog and conjecture

Tais predicate and its ¢ has the same quality as that in Chipter 9.2 -
that the 4's thenselves are each almost the desired predicate. Note also

that by properly ordering the subsets, we can stili choose

YIIear|| = Year

We conjecture that this example is a worst cage: to be precise, if L ]

containg |¢| elements, the maximal coefficient growth cannot be faster than

/‘+1)g@|

(

vhere the eéxpcnent constant. is the Fibonacci, or golden rectangle ratio.

1

Out conjecture is based only on arguments too flimsy to write down®

9.4 I ianc } 4 Bounded Coefficients On The infini

In f 7.10 we noted a counterexample to extending the group invariance
theorem (52.3) to infiuite retinas. The difficulty came through using an
infinite stratification that leads to unbounded coefficients. This in turn
raises convergence problems for the symmetric summations ‘used to prove equal the
coefficients within an: equivalence-class. If the coefficients are bounded, and
the group contéi - ° translation éroup, we can prove the correspending theorem.

wie do not know stronger results: presumably there is a better theorem with

Such as the fact that /5 usually occurs in upper bounds in the theories
of rational approximations and geometry of numbers.




(2) a Summability-type condition on the coeffic

ients and (b) o weaker structure
condition on the group).

The proof depends on the geometric fact that for

b e 115 Al sl i 4
S i ot i1

increasing concentric circles about two fixed centers

equivalence clagg,

Proof: Let Tc be the get of translationg

w
distance . Let y -"E a‘¢ - 9-’

Then define

Fe® = T8, ogn - gy "Zem sa | .z
8¢T '@ P g g8 g

=T Zom za -207
« 8 ”

? 8T




because ‘l‘c is closed under the group inverse. By the argument of £ 2.3
each #c i# equivalent to y as a predicate. The following lemma shows that we

can select an increasing sequence Cl’ cz, «+«s for which the limit of the average

1lim 1 X“
i+o lc. 1 N ¥

has the same value independent of ¢ within every equivalence class.
LEMMA: Suppose some funcfion £(x) is bounded,ie.,|£(x) <M, 1 g2
Then there exists a sequence of increasing radii Ri such that

Lm |1 j £(y)dA] <u
Ri-»- ZxRi “1

hag value independent of the selection of the common center Ci, if the limit exists
for any center at. all.
Proof: Choose as center the origin and any sequence of Ri’s increasing without

bound. Then for each i we have

1
lm: f £(y)da| < u

¢

so by cmpa:ctngss we can choose a convergent subseciuence; call chis {Ri},

now. Now given any other center x' for the circles, note that

_ A (x')
: | f(y)dA - £(x' +y) dA| < 2.pM. 12
(Z“Bi '[cjl J‘(;i l 2aR




where Ai(x') is the area of overlap between the original CJ': and the pew ci

centered aroung x'. But as the radius grows, for any x'

4; x')

of f(x) at infinity.
To prove the main theorem,

equivalence class, and set

£f(g) = L

regarding g ag 3 translation from the origin.
It follows that the perceptron obtained inf 7.4 must have unbounded
coeffi‘cient'é; and hat there is no equivalent member of L(®) with bounded

coefficientg.

The methods of §9.2 ung $9.3 are similar to those usged by Mghill and Kautse
[1961]* to find maximal coefficients for the order-1 casge. They show that with

integer coefficients there is an order ] Predicate for which some coefficient

2.1., n
exceedse a 27,

* Mghill, J: aud Kautz, W.H., "0On the size of weights required for Linear-Input
Switching Functions," IRE Trang, on Electronic Computers, June 1961, pp. 288 - 292,




CHAPTER 10: LEARNING
—_———iLEARNING

10.0 Introduction

Suppose one wants a machine that "discriminates" between two +etg

{p} = Bls eeos R, and {qQ} = Qs ey Q,

of figures. Assuming that a set § of predicates ig availalle, one weats te

find the coefficients of & function *Pa in L(%) with the property that

for
every k,

#Pa- (Pk) = 1 and *176 (Qk) = Q.

That is, we would like to find a ger {acp} of coefficients such that

e I %cp(r.g). >01 . but g p.q,(p(qk) <01,

But suppose further that for some Teason we don't want to design the
- -“ach,i‘.n_c especially for this job, perhaps

~

1). ‘because we have to build the machine before we are told
- vhat {P} and {Q} are, or

Then it becomes teapting to ‘consider building a machine thet itself cam

'accept information and calculate an appropriate set of coefficients--1n short,




& machine that "]earns."

In the
2 particularly simple and elegant learning muchine that calculates coefficientn
when it is given a Sequence of P's and Q's and told which class each 1is in,
It is just about. the ';s’_implest: machine that might be said to be able to "learn,"
and further on we will discuss its efficiency, and range of capability in
relation to Somemore sophisticated concepts of "learning machines, "
< - Because we are now concerned more with the gets of coefficients
than with the nature of & itself, it will be convenient to think of the .
functions in L(%) as a~sociated with the gets {aq,} regarded as vectors,
and we will make heavy use of the geometry of the vector-space whose base
vectors are the ¢'s in &, ang with coefficients usually the integers.
Warning: " -the vector-space base is the set of ¢'s, and rot th» points of R!

Also, in this chapter we will think of the forms I‘aicpi as eiements of a vactor

Space; one should remember that the set L(2) of y's isn'(: 2 vector space, and

that for each ¥eL(%) there are many a-vectors*. (In fact, though it {s not

Itriﬁaifb‘e-‘observec; that vector geometry occurs only in this chapter of this
book. In the general perceptron literature, vector geometry is the chief
mathematical tool (followed -closely by statistics--which also plays & small
role in our development.) If we were to volunteer one chief reason why so
little was learned about perceptrons in the decade that they have been studted,
we would point toward the uge of ths vector geometry., For in thinking about
the Ipiay's as vectors, the relations between the patterns {X} and the
Predicates in L(%) have become very obscure, The Q_-vectors are not linear
operators on the patterns themselves; they are Co-operators, that {is, they

operate on s
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important here, the st of sets {o} that defins a siven § forma convex

“linear hypercone, " f.e., a convex get closed under scaiar multiplication.)

With these varnings in mind;-

We can-regard any figure

48 determining a vector Vx with- components

@ ®, 9,0, .

w5 (D).

(= subset) X of R

And any predicate ¥ in L(4) is determined by at least some vector A’ with

couponents

-
T 2,

(It is conventent to assume that # containg the identity function PX) =1 oo

&hat: vewon't need an explicit threshold 0 ip our formulae.)

r

’A‘-&ic:oi’{%_, with the property

NS *
e Jut

1-Our-geal is to find & discriminating function ’P'Q'

APE.VPk >0 andt?a'vm: < 0.

.
g .

fb’r"&va:nt;:.of a better idea, it occurs to us to try to find AI’E

s

ogram," ‘as follows:

» OF, equivaleatly ap

by a "learning




Set A=(,1, ..., 1), or to eny other initiel
value you pleage!

Choose an element of {Pk} or [Qx}, call it v.
Compute the sign of A + Vv, 1f it is correct (i.e.,
has the proper 8ign) go back to step 1. Othervise
replace A by A + V yhere the sign s the one A'V
should have, and go back to step 1.

The idea is simple: if AV is too large, the change will result ir
A-V)v=Ay- IVlz next time, and this has a better chance to' be negative.
Conversely, if AV is too negative, (A + V)V = Ay 4 IVIZ is more 1likely to
be positive., Thus we have a simple kind of "feedback"--whenever the system
makes an error, then A ig "reinforced"--that is, slightly modified--in a
direction designed to correct the error!

Will it work? It seems terribly simple-minded, because each cozrection

1s performed with just one Pp or Q in view. Why would one expect genersl

improvement when a correction designed to correct for one P or Q may make A

wrong for many others? Indeed, this will happen, esnecially at the beginning
of the process. The remarkable fact is that this procedure will ultimately-
mr:: if there existe any AP-: at:.all then the procedure will eventuslly fimd
oae . (Then it will continue to b correct, so will remain in Step (1) above.)

And there is no constraint on the choice in Step (1) on the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>